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1. Iatroduction

The design of a distributed database msnagement system (DBMS)
involves many criticsl design decisions. It is recognized that ome of
the most important of these design decisions is the choice of the con—
currency control slgorithm to be used. Meny comcurremcy control algo-
rithms for distributed DBMSs have been proposed [Bern8ia), but few stu-
dies have been undertaken to rigorously compare their performance
[LIN81, LINN82a, LINN82bL, LINN82c¢, GARC78, GARC79z, GALL82, RIES79a,
RIES79b] and other characteristics. One possible resson for this is
that, in detail, these algorithms seem very different, thus making com—

‘ parison difficult, As a result, the distributed DBMS designer finds it
difficult to choose the concurrency comtrol slgorithm which is sppropri-
ate given the design parameters of the particular system under con-

sideration.

This report attempts to provide & heandbook of information about a
number of important comcurrency control algorithms which can be used in |
the design of a distributed DBMS. The report describes a framework for
distributed DBMS concurrency control which abstracts the essentisal
structure of these algorithms from algorithmic details, and classifies

algorithms within this freamework. The report then summarizes the i

results of a detailed simulation study of the performance of these algo-
rithms based om the framework, For various system and application
environments, algorithms are ranked according to their performance.

These rankings of algorithms can guide the system designer in selecting

the best distributed DBNS concurrency algorithm for his system, Addi-
tional details of the simulation results can be found in an Appendix,
| while full details of the simulation results can be found in associated
semi-annual and final technical reports [LIN81a, LIN82as, LIN8S82b, LIN83).

In using the results, the system designer must interpret the rank-
ing of the algorithms in the context of the performance evaluation model
used in-the simulation. The model either does not simulate or makes
assumptions sbout some detsils of the algorithms, This is unavoidable

ip any simulation, Rowever, the model used here captures all the

e -im‘QM' ﬁ .. .
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important factors that effect the performance of s distributed con-
currency control algorithm: IO delay, communjcation delay, CPU delay,
transaction blocking through locking, transaction abortion due to con-
flict or deadlock, overhead for deadlock detection, Thus, the model is
goneral enough to apply to most cases.

This report also provides a basis for the system designer to evalu-
ate different database recovery algorithms., Like datsbase concurrency
control, database recovery has also been studied extensively, many algo-
rithms have been proposed, and, on the surface, the algorithms seem very
different. However, a careful examination shows that many of these
slgorithms are quite similar, This report describes s framework for
database recovery algorithms, Within this framework, the many database
recovery algorithms presented in the literature bave been reduced to
four categories. This framework can be used as the basis to compare the

algorithms, Algorithms belonging to the same category may differ only
in minor details.

The report is organized as follows. Section 2 describes the frame-
work for distributed DBMS concurrency control algorithms, and sectiom 3
describes the framework for database recovery slgorithms, Section 4
compares the performance of various distributed DBMS concurrency conmtrol
algorithms, using the framework developed im Section 2, Section 5 con—

tains a list of references.

proscven it
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2. A Framework For Distributed Database
Concurrency Control

2.1 Iatroduction

A distributed database system (DDBS) is a database system (DBS)
that provides commands to resd and write data that is stored at multiple
sites of a network, If users access a DDBS coancurrently, they may
interfere with eack other by attempting to read and/or write the same

data. Concurreacy control is the activity of preventing such behavior.

Dozens of algorithms that solve the DDBS concurrency comtrol prob-
lem have been published (see [BERN82] and the references). Unfor-
tunately, many of these algorithms are so compl’ex thet only am expert

can understand them.

To remedy this situation, we develop, in this section, a simple
framework for understanding concurrency control algorithms. The frame-
work decomposes the problem into subproblems and gives basic techniques
for. solving each subproblem. To understand a published algorithm, ome
first identifies the techmique used for each subproblem and then checks
to see whether the techniques have been appropriately combined. The
framework can also be used to develop new algorithms by combining exist-

ing techniques in new ways,

This section has eight subsections. Sections 2.2 and 2.3 set the
stage by describing a simple DDBS architecture and sketching the frame-
work in terms of the architecture. The framework itself appears in Sec-
tions 2.4 through 2.8. Section 2.9 uses the framework to explain
several published algorithms., Section 2.10 presents a summary,

—_— o
oy .
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2.2 Distributed DBS Architecture

We use a simple model of DDBS structure and behavior. The model
highlights those aspects of a DDBS that are important for understandiug
concurrency control, while hiding details that don’t affect concurrency

control.

A database consists of a set of data items, denoted (...,x,y,z}.
In practice, s dats item can be file, record, page, etc. But for the
purposes of this paper, it’'s best to think of a data item as a simple

variable., For now, assume ecach data item is stored at exactly ome site.

Users access data items by issuing Read end Y¥Yrite operations.
Read(x) returns the current value of x. Write(x,new value) updates the

current value of x to new-value,

Users interact with the DBMS by executing programs called transac-
tions. A trapnsaction only interacts with the outside world by issuing
Reads and Writes to the DDBS or by doing terminal I/0, VWe assume that
every transaction is a complete and correct computation: each tramsac-
tion, if executed alone on an initially consistent database, would ter-

minate, produce correct results, and leave the database consistent.

Each site of a DDBS runs one or more of the following software
modules (see Figures 2.1 and 2.2): a transaction manager (TN), a dats
manager (DM), or a scheduler. Transactions talk to TM's; Td's talk to
schedulers; schedulers talk among themselves and also talk to DM’'s; DN’s

manage the data.

Each transaction also issues a Begin operation to its TN whemn it
starts executing and an End when it's finished.

The TM forwards each Read and Write to a scheduler. (Vhich
scheduler depends on the concurrency control algorithm; usually the
scheduler is at the same site as the data being read or writtea, In

some slgorithms, Begins are slso sent to schedulers,)

The scheduler controls the order in which DMs process Reads and
Writes. When a scheduler receives a Read or Write operation, it can

either output the operation right away (usually to a DM, sometimes to
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another scheduler), delay the opersation by holding it for later action,
or reject the operation, A rejection causes the system to abort the
transaction that issued the operation: every Write processed on behalf
of the transaction is undone (restoring the old value of the datas item),
and every transaction that read a value written by the aborted transac-
tion is also aborted. This phenomenon of one abort triggering other

aborts is called cascading sborts. (It is usually avoided in commercial

DBSs by not allowing a transaction to read another tramsaction’s output
until the DBS is certain that the latter transaction will not abort., In
this report, we will mot try to prevemt casceding aborts.® Techniques
for implementing abort will be discussed in Section 3. (See [GRAYS81,
HAMM80, LANP76].)

The DM executes each Read and Write it receives. For Read, the DM
looks in its local database and returns the requested value. For Write,
the DM modifies its local database and returns an acknowledgment, The
DM sends the returned value or acknowledgment to the scheduler, which

relays it back to the TM, which relays it back to the tramnsaction.

DMs do not necessarily execuie operations 'first come, first
served’. If a DM receives a Read(x) and a Write(x) at about the same
time, the DM is free to execute these operations in either order. If
the order matters (as it probably does in this case) it is the
scheduler’s responsibility to enforce the order. This is dome by wusing
a handshaking communication discipline between schedulers and DMs (see
Figure 2.3). If the scheduler wants Read(x) to be executed before
Write(x), it sends Read(x) to the DM, waits for the DM's response, and
then sends Write(x). Thus the scheduler doesn’t even send Write(x) to
the DM until it knows Read(x) was executed. Of course, when the execu-
tion order doesn’t matter, the scheduler can send operations without the
handshake.

Bandshaking is also used between other modules when execution order

is important.
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To execute Read(x) on behalf of tramsaction 1
followed by Write(x) on behalf of transaction 2

Scheduler bM

send leud(x).~____~_~_5_§~_‘§~55—N\

T roceive Read(x)

execute Read(x)

send value

receive v;lno‘4""’ﬂ”—‘—”’pfff’avfff”vf—’

send Write(x)
__‘—__———‘_‘—___*_‘__‘“““~—————>-receive Write(x)

execute Write(x)
send ask

Figure 2.3 Handshsking

2.3 The Framework

The DDBS modules that sre most important to conmcurrency control are
schedulers, A concurrency control algorithm consists of some number of
schedulers that run some type of scheduling algorithm in a centralized
or distributed fashion. In addition, the concurrency control algorithm

must handle ‘replicated data’., TM’s often handle this problem,

To understand a concurrency control algorithm using our framework

one must determine:

1. The type of scheduljng slgorithm used (discussed in Sectioms 2.4 and
2.7)

L vk v.‘wa;':;-'ﬁ ‘m* Ve

o g -




r

Page 2-6 Distributed Database System Designer Handbook
Section 2 A Framework For Distriboted Database
Concurreacy Control

2, The location of the scheduler(s) (i.e., centralized vs. distributed
(Section 2.5))

3. How zeplicated dats is handled (Section 2.6)

2.4 Schedulers

There are four types of schedulers: two-phase locking, timestamp
ordering, serialization graph checking, snd certifiers. Each type can
be used to schedule rw conflicts, ww conflicts, or both. This section
describes each type of scheduler and assumes that it is used for both
kinds of conflict. Ways of combining scheduler types (e.g., two-phase
locking for zxw conflicts and timestamp ordering for ww conflicts) are
described in Section 2.8. This section also assumes that the scheduler
runs at a single site,( see Figure 2.4). Section 2,5 1lifts this res-
triction.

2.4.1 Two-Phase Locking
A two-phase locking (2PL) is defined by three rules (EGLT):

1. Before outputting r;[x] (resp. w;[i]), set a read~lock (resp.
write—lock) for T; om x. The lock must be held (at least) until the
operation is executed by the appropriate DM. (Handshaking can be

used to guarantee that locks sre held long enough,)

2. Different transactions cannot simultaneously hold ‘conflicting’
locks. Two locks conflict if they are on the same data item and (at
least) one is a write-lock. If rw and ww scheduling is done
separately, the definition of ‘conflict’' is modified. For rzw
scheduling, two locks on the same data item conflict if exsctly ome
is a write-lock (i.e., write-locks don’'t conflict with each other).
For ww scheduling, both locks must be write locks.

3. After releasing a lock, s transaction cannot obtain any more locks.

Rule (3.) csuses locks to be obtained in s two-phase msaner. Dur-

ing its growing phase, a transaction obtains locks without releasing
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transactio

trnns;ction

transaction
. ™ Scheduler DM data
trans;ction
transaction : ) C Y
: ™ DX m
transaction

Figure 2.4 DDBS Architecture with Centralized Scheduler

any. By releasing a lock, the transaction enters its shrinking phase
during which it can only release locks. Rule (3.) is uvsually imple-

mented by holding all of a transaction’s locks until it terminates.

Due to Rule (2.), an operstion received by a scheduler may be
delayed because another transaction alresdy owns a conflicting lock.
Such blocking situations can lead to deadlock. For example, suppose
tllx] and t2[y] sot read-locks, and them the scheduler receives vlly]
and wy(x]. The scheduler cannot set the write—lock mneeded by v, [yl
becavse T, holds a read-lock on y. Nor can it set the write-lock for
wy[x] because T; holds a read-lock on x. And, neither T; mnor T, car
release its read-lock before getting the needed write—lock because of
rule (3.). Hence, we bave a deadlock: T; is waiting for T, which is
waiting for T;.

Deadlocks can be characterized by a waits-for graph |[BOLT72,
KING74],. a directed graph whose nodes represont transactions and whose
edges represent waiting relationships. Edge Tiiij means T; is waiting
for a lock owned by T.,. A deadlock exists if and only if (iff) the
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waits—for graph has a cycle. For example, in tbe above example the
waits-for graph is
T Ty .
-~

A popular way of handling deadlock is to maintain the waits-for
graph and to periodically search it for cycles. (See [Chap. 5, AHO75]
for cycle detection algorithms.,) When a deadlock is detected, ome of
the transactions on the cycle is aborted and restarted, thereby breaking

the deadlock.

2.4.2 Timestamp Ordering

In timestamp ordering (T/0) each transaction is assigned a globally
unique timestamp by its TN, (See [BERNS82, THOM79] for bow this is
done.) The TM attaches the timestamp to all operations issued by s tran-
saction. A T/O scheduler is defined by s single rule: Output sll pairs
of conflicting operations in timestamp order, Make sure conflicting
operations are executed by DMs in the order they were output.
(Handshaking can be used to make sure of this.) As for 2PL, the defini-
tion of ‘conflicting operation’ is modified if rw and ww scheduling are

done separately.

Several varieties of T/0 schedulers have been proposed. We only

sketch these variations here. Full details appear in [BERNS82].

A basic T/0 scheduler outputs operations in essentially first come,
first served order, as long as the T/0 scheduling rule holds. When the
scheduler receives ri[x] it does the following:

if TS(i) < largest timestamp of any Write on x yet ’'accepted’

then reject ri[x]

else ’‘accept’ :i[x] and output it as soon as all Writes om x with
smaller timestamp have been acknowledged by the DM.

When the scheduler receives w;[y]l it behaves as follows.

if TS(i) ¢ largest timestamp of any Read or VWrite on x yet
‘accepted’

then reject w;(x]

2lse ’'accept’ w;[x] and output it as soon as all Reads and Writes on
x with smaller timestamp have been acknowledged by the DM,
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A gonservative I/Q scheduler avoids rejections by dolaying opera-
tions instead. An operation is delayed until the scheduler is sure that
ontputting it will cause no future operations to be rejected. Conserva-
tive T/0 requires that each scheduler receive Reads and Writes from each
TH in timestamp order. To output any operation, the scheduler must have
an operation from each TN in its ‘input queue’. The scheduler then
'accepts’ the operation that has the smallest timestamp. 'Accept’ means
to remove the operation from the input queue and to output it as soon as

all conflicting operations that have smaller timestamp have been ack-

nowledged by the DN. Variations om conservative T/O are discussed in
[BERNS82, BERN80Oa, LIN79].

Basic T/O and conservative T/O are endpoints of a spectrum, Basic
T/O delays operations very little, but it tends to reject many opera-—
tions. Conservative T/0O never rejects operations, but it tends to delay
them often. One can imagine T/0 schedulers between these extremes., To

our knowledge, no one has yet proposed such a scheduler.

Thomas’ write rule (TWR) is a technique that reduces delay and
rejection [THOM79). TWR can be used only to schedule Writes, and it
needs to be combined with basic or conservative T/0 to yield a complete
scheduler. If we're interested only in ww scheduling, TWR is simple.
When the scheduler receives w;[y] it does the following:

if TS(i) < largest timestamp of any Write on x yet 'accepted’

then ‘pretend’ to execute wi[y] (i.e., send an acknowledgement back
to the TM, but don’t send the Write ‘to the DM

olso ‘sccept’ w;[x] and process it ss usual,

The basic T/O-TIRW combination works like this. Reads are processed
exactly as in the basic T/0. But when the scheduler receives a w(y],
it combines the basic T/O0 rule with TWR as follows:

if TS(i) < largest timestamp of any Read
on x yet ‘accepted’ rw scheduling (basic T/0)
then ’‘reject’ w‘[y]
8lseif TS(i) ¢ largest timestamp of any Write on x yet 'accepted’
wy scheduling (TWR)
then ’'pretend’ to execute vily]
o2lse ’'accept’ vilx] and output it as soon as all operations omn x with

- Sa . N . ’W -
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smaller timestamp have been acknowledged by the DN.

The conservative T/0-IWR combination is described in [BERNS82]).

2.4.3 Serialization Graph Checking

A sorialization graph (SG) is a directed graph vhose mnodes are
transactions) such as To, vees Tn -— and whose edges are all T1°'>T}
such that, for some x, either (1.) T; reads x before I} writes x, or
(2.) T; writes x before T} reads x, or (3.) T; writes x before I} writes
x. A serialization graph checking scheduler works by explicitly build-
ing a serislization grsph (SG) and checking it for cycles. Like basic
T/0, an SG checking scheduler never delays an operation (except for
handshaking reasons). Rejection is the only action wused to avoid

incorrect execution,
An SG checking scheduler is defined by the following rules,.
1. When transaction T; Begins, add node T; to SG.

2, Vhen a Read or Write from 'l‘i is received, add all edges Ti"Tj such
that Tj is a node of SG, and the scheduler has already output s con-
flicting operation from Tj. As for the previous schedulers, the
definition of ’'conflicting operation’ is modified if rw and wv con-

flicts are scheduled separately.

3. If after Rule 2 SG is still acyclic, output the operation, Make
sure that conflicting operations are executed by DMs in the order

they were output. (Handshaking can be used for this,)

4., If after Rule 2 SG has become cyclic, reject the operation. Delete
node T; from sll edges Ti"Tj or Tj"Ti from SG. (SG is now acyclic

again.)

One technical problem with SG checkers is that a tramsaction must
remain in SG even after it has terminated. A transaction can be deleted
from SG only when it is a source node of the graph (i.e., when it has no
incoming edges). See [CASA79] for a discussion of this problem and for
techniques that efficiently encode information about terminated tramsac-
tions that remain in SG.

R

I
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2.4.4 Certifiers

The term ceortifier refers to a scheduling philosophy, not a
specific scheduling rule, A gertifier is a scheduler that makes its
decisions on a per-transaction bdasis. When a cerxrtifier receives an
operation, it internally stores information about the operation and out-
puts it as soon as all earlier conflicting operations have been ack-
nowledged. When a transactions ends, its TM sends the End operation and
outputs it as soon as all earlier conflicting operations have been ack-
nowledged. At this point, the certifier checks its stored information
to see whether the transaction executed serializably. If it did, the
certifier gertifies the tranmsaction, allowing it to terminate; other-

wise, the certifier aborts the transaction.

All of the earlier schedulers can be adapted to work as certifiers.
Here is an SG checking certifier. When a certifier receives an opers-
tion, it adds a node and some edges to SG as explained in the previous
section. The certifier does not check for cycles at this time. When a

transaction, T;, ends, the certifier checks SG for cycles. If T,

i does

not lie on a cycle, it is certified; otherwise it is aborted.

Here is a 2PL certifier [THOM79, KUNG79]. Define a transaction to
be active from the time the certifier receives its first operation until
the certifier processes its End. The certifier stores two sets for each
active transaction T,:

T,’s resdset, RS(i) = {xlthe certifier has output r,[x])
T,'s writeset, WS(i) = {x|the cestifier has output vi[x]}.
The certifier updates these sets as it roceives operations, When the
certifier receives End;, it runs the following test:
Let RS(active) = U(RS(j), such Tj is active, but j ¢ i)
WS(active) = U(WS(j), such Tj is active, but j ¥ i)
if RBS(i) WS(active) # 9, or
WS(i) BRS(active) U¥S(active) ¢ ¢
then certify T,
else abort T.

This amounts to pretending that transactions hold imaginary 1locks
on their readsets and writesets. When transaction T‘ ends, the cortif-

ier sees vhethor T;’'s imaginary locks conflict with the imaginary locks
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held by other active transactions. If there is mo comflict, Ti is cer-
tified. Otherwise i. is aborted.

T/O cextifiers are also possible, To our knowledge, no one has
proposed this algorithm yet, Certifiers also can be built that will
check for serializable executions during transactions’ executions, not
just at the end. The extreme version of this idea is to check for seri-
alizability on every operation. At this extreme, the certifier reduces

to a 'normal’ scheduler.

2.5 Scheduler Location

The schedulers of Section 2.5 can be modified to work in a distri-
buted manner. Instead of one scheduler for the whole system, we now
assume one scheduler per DN (refer back to Figure 2.1). The scheduler
normally runs at the same site as the DM and schedules all operations

that the DN executes.

The new issue in this setting is that the distributed schedulers

must cooperate to attain the scheduling rules of Section 2.§.

The main problem caused by distributed schedulers is the mainte-
nance of global data structures. Distributed 2PL schedulers need a glo-
bal waits—for graph. Distributed SG checkers need a global SG. 1In dis-
tributed T/O scheduling, no global data structures are needed; each
scheduler can make its scheduling decisions using local copies of R-
TS(x) and W-TS(x) for each x at its DM. Distributed certifiers gen-

erally manifest the same problems as their corresponding schedulers.

2.5.1 Distribuoted Two-Phase Locking

Refer to the 2PL scheduling rules of Section 2.5.1. Rules (1.) and
(2.) are ‘local’. The scheduler for data item x schedules sll coopera-
tions on x. Hence this scheduler can set all locks on x, Rule (3.)
requires a smsll smwount of inter—scheduler cooperation, no scheduler can
obtain & lock for tramsaction T; sfter sny scheduler releases a lock for
Ti' This can be done by handshaking between TM’s and schedulers. When
T, Ends, its TN waits until sall of T;'s Resds and Writes are
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soknowledged. At this point the TM knows that all of T;'s locks are set
and that it’s safe to release locks. The TM forwards End; to the
schedulers, which then release Ti's locks.

One problem with distributed 2PL is that multi-site deadlocks are
possibdle. Suppose x and y sre stored at sites A and B, respectively.
Suppose that tilyl is processod at A, setting a read-lock on x for T, at
A; and suppose that rj[x] is processed at site B, setting a read-lock on
y for I} at B. If vj[x] and '1[y] are now issued, a deadlock will
result; Tj will be waiting for T; to release its lock on x at A, and T;
will be waiting for T} to release its lock ony at B, Unfortunately,
the deadlock isn’t apparent by looking at site A or site B alone., Only
whoen taking the union of the waits—for graph at both sites does the
deadlock cycle materialize.

See [MENA79, STON79, GLIG80O, ROSE78] for solutions to this problem.

2.5.2 Distributed Timestamp Oxdering

T/0 schedulers are easy to distribute because the T/O scheduling
rule of Section 2.5.2 is inherently local. Consider a basic T/O
scheduler for dats item x. To process an operation on i, the scheduler
needs to know oanly whether a conflicting operation that has s larger
timestamp has been accepted. Since the scheduler handles all operations
on x, it can make this decision itself.,

2.5.3 Distributed Serialization Graph Checking

SG checkers are harder to distribute than tbhe other schedulers
because the serialization graph (SG) is inherently global, A transac-
tion that accesses data at a single site can become involved in a cycle

that spans many sites. See [CASA79) for & discussion of this problem.
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2.5.4 Distributed Certifiers

Distributed certifiers have a synchronization requirement a bit
like Rule (3.) of 2PL: T;’s TN must not send End; to any certifier
until all of Ti's Reads and Writes have been acknowledged. (i.e., we

must mnot try to certify T, at any site until we are ready to certify 'I‘1
at all sites).

Beyond this, each distributed <certifier ©behaves like the
corresponding scheduler., A distributed 2PL certifier needs little
inter—scheduler cooperation (beyond that described in the previous para-
graph). The certifier st each site keeps track of the data items at its
site read or written by active transactions. When a coertifier at site A
receives End;, it sees whethor any active transaction conflicts with T;
at site A. If not, T, is certified at site A. If T, is certified at
2ll sites at which it accessed data, then it is 'really’ certified; oth-

erwise it is aborted.

A distributed SG certifier shares the problems of distributed SG
schedulers, The certifier needs to check for cycles in a global graph

every time a transaction ends.

2.5.5 Other Architectures

Centralized snd distributed scheduling are endpoints of a spectrum.
One can imagine bhybrid architectures that feature multiple DMs per
scheduler., See Figure 2.5. This architecture adds no technical issues

beyond those already discussed.

Bierarchical scheduler architectures are also possible, See Figure

2.6. To our knowledge, no one has studied this approach.

2.6 Data Replication

In a zeplicated database, each Jogical dats item, x, can have many
physical copies denoted (81:---.8.1. which are resident at different
DMs. Transactions issue Reads and Writes on logical dats items. ™'s
translate those operations into Reads and Writes on physical dats. The

effect, as seen by each transaction, must be as if there were only one
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copy of each data item.

There is s simple way to obtain this effect. Each TM translates

r;[x] into ’i[‘j] for some copy x4 of x and w;[x] into [vi[lelall

copies x. of x}. If the scheduler(s) is SR, the effect is just like a i

J
nonreplicated datsbase. To see this, consider a sexial log equivalent
to the SR log that executed. Since each transaction writes into all
copies of each logical dats item, each ri[xj] read from the ‘latest’

transaction preceding it that wrote into amy copy of x. But this is P

exactly what would bhave happened had there been only onme copy of x.

(For a more rigorous explanation, see [ATTA82].) Consider this example:

'0[11]~———>f1[11]———>'1[11]

wolx,y] rylyy)=——>w (x,]

L3 = '0[}’1] !2[12]_‘“"2[yl]

'0[)’2] ~—>l'2 [yzl ——-b'z[)'z]

X; and x4 are copies of logical data item x; yy and y, are copies of y.
To produces initial values for botk copies of each data item. T, reads
T and y, and writes x; T; reads x and y, and writes y,
Ly is SR. It is equivalent to the following serial log:
Ly = wolxy) wolxp) wolyy] wolyy) rplxg] xylyy) wilxy] wylx,]
10351 ryly,l walyyl wyly,l

Note that each Read, e.g., rzlle or rzlyzl. reads from the ‘latest’
transaction preceding it that wrote into any copy of the data item,
Therefore, Ly has the same effect ss the following log in which there is

no replicated data:

Ly = wolx] wolyl rylx] ry0ly] wyls) ry03) rplyl wylyl

We call this the do nothing approach to replication -—— just write

into all copies of each data item and use an SR scheduler.

Two other approaches to replication hsve been suggested. In the

primary copy approach, somwe copy of each x, say x is designated as its

pl
primary copy [STON79]. Easch TM translates r;[x] i: o ri[’j] for some

as Dbefore. Writes are translated d. ferently. The T™

: copy 1.
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Begin
. yv | Scheduler DM
. viz]
¥rite (x) _ ? X
End vix;]
? ‘2
Scheduler DN

Note: x; is primary copy

Figure 2.7 Processing Writes in Primary Copy

translates vi[x) into a single VWrite, 'i[xp]’ on the primary copy. When
the primary copy’s scheduler outputs 'i[‘p]' it slso issues Writes on
the other copies of x (i.e., 'i['ll"""i[xn])' See Figure 2.7. These
Writes are processed by the schedulers for x;,...,X, in the usual vay.
For example, in 2PL, the scheduler for x4 must put a write-lock on tJ
for Ti before outputting wi[xj]. The primary copy's scheduler may be
centralized (in which case the technique is called piimary site

[ALSB76}), or distributed with the primary copy’s DM.

Primary copy is a good idea for 2PL schedulers, It eliminates the
possibility of deadlock caused by Writes on different copies of ome data
item. Suppose x has copies xy snd x,. Suppose that 'I‘1 and T2 want to
Write x at sbout the same time. In the do nothing spproach, the follow-
ing execution is possidble: T; locks x5; T, locks x5; T; tries to lock

Py ERgre
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X but is blocked by T,’'s lock; T, tries to lock x; but is biocked by
T;'s lock. This is a deadlock. Primary copy avoids this possibility

because each transaction must lock the primary copy first.

In the yoting approach to replication, TMs again distribute Writes
to all copies of each data itexr [THOM79). Assume that we are vsing dis-
tributed schedulers. When a scheduoler is ready to output vi[le. it

sends & vote of yes to the vote collector for x; it does not output

'i[xj] at this time. When the vote collector receives yes votes from s
majority of schedulers, it tells all schedulers to output their Writes,
(Each scheduler may need to update its local datas structures before out-
putting 'i[xj] (e.g., set 8 write-lock on xj.)) Assume each scheduler is
correct (i.e., produces an acyclic SG). Then, since every pair of con-
flicting operations was voted yes by some correct scheduler (both opera-
tions got a majority of yes's), the SG musi be acyclic and the result is

correct,

The principal benefit of voting is fault tolerance; it works
correctly as long as & majority of sites holding a8 copy of x are run-

ning. See [THOM79, GIFF79] for details.

2.7 Multiversion Data

Let us return to a database system model where each 1logical data

item is stored at one DM.

In a multiversion database each Write wi[x]. produces a8 new copy
(or version) of x, denoted xi. Thus, the value of x is a set of ver—
sions, For each Read, ri[x], the scheduler selects one of the versions
of x to be read. Since writes don’t overwrite each other, and since
Reads can read any version, the scheduler has more flexibility in con-

trolling the effective order of Reads and Writes,

Although the database has multiple versions, users expect their
transactions to behave as if there were just one copy of each data item,

Serial iogs don't always behave this way. For example:

wo[xol tllxol wllxlyll rz[xoyll vzlyzl
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is a serial log, but its behavior cannot be reproduced witk only one

copy of x. Ve must therefore restrict the set of allowable serial logs.

A serial log is l-copy seria] (or 1-serisl) if each ti[xj] reads
from the last transaction preceding it that wrote into any version of x.
The above log is not 1-serial, because £, reads x from Yo, but
'O[xol(vllxll(rzlxol. A log is ]-serjalizable (1-SR) if it’s equivalent
to a 1-serial log, 1-serializability is our correctmess criterion for

multiversion database systems.

All multiversion concurrency control algorithms (that we kaow of)
totally order the versions of each data item in some simple way. A ver-—
sion order, <, for L is an order relation over versions such that, for

each x, (( totally orders the versions of x.

Given a version order <{, define the multiversion SG w.r.t. L and
(¢ (denoted MVSG(L,<<)) as SG(L) with the following edges added:* for
each rj[xj] and vk[xk] in L, if xk((xj then include Tk4>T5, else include
T j"Tk'

MULTIVERSION THEOREM (BERN81a). A multiversion log is 1-SR if
there exists & version order <¢ such that MYSG(L,<<) is acyclic.
(]

This theorem enables us to prove multiversion concurrency control
algorithms to be correct. We must argue that for every log L produced
by the algorithm, MVSG(L,<<) is acyclic for some <<,

The types of multiversion schedulers that have been proposed fall
into two classes that approximately correspond to timestamping and lock-

ing.

®Note that the two ogetntions conflict (and produce an edge in SG(L))
o same yersion and one of them is a write.

if they operate on t
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2.7.1 Multiversion Timestamping

Multiversion concurrency control was first introduced by Reed in
his multiversion timestamping method [REED78]. In Reed's algorithm,
each transaction had a unique timestamp, Each Read and Write carries
the timestamp of the tranmsaction that issued it, and each version car—
ries the timestamp of the transaction that wrote it. The versiom 1is
defined by x<<xd if TS(i)<TS(j).

Operations are processed 'first come, first served’.*® However, the
version selection rules ensure that the overall effect is as if opers-
tions were processed in timestamp order. To process ti[x], the
scheduler (or DM) returns the version of x with the largest timestamp (
TS(i). To process w, [x], version xi is created, unless some vj[x] and
ry[x] have already been processed with TS(j)<TS(i)<TS(k). If this con-

dition holds, the Write is rejected.

An analysis of MVSG(L,>>) for any L produced by this method shows
that every edge Ti-»'l‘j is in timestamp order (TS{i)<TS(j)). Thus
MVSG(L,<<) is acyclic, and so L is 1-SR.

2.7.2 Multiversion Locking

In multiversion locking, the Writes on each data item, x, must be
ordered. We define xi<<x'j if vi[xi](vj[xj]. Each version is in the
certified or nncertified state. When a version is first written, it is
uncertified. Each Read, ri[x], read oither the last (wrt(() certified
version of z or any uncertified version of x. When a transaction fin-
ishes executing, the database system attompts to certify it. To certify

Ti' three conditions must hold:

Ci. For each rh[xj], xj is certified.
C2. For each wi[xi]. sll xj << xi are certified.
C3. For each vi[xi] and each xj <« xi. all transactions that read

xj have been certified.

These conditions must be tested atomically. When they bold, T; is

¢*Handshaking is used to ensure that logicnlly conflicting operations
axre executed by DMs in the order the scheduler output them.
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declared to be certified and all versions it wrote are (atomically) cer—
tified.

An analysis of MVSG(L,<<) for any L produced by this method shows
that every edge I}-Jh is consistent with the order in which transac-
tions wore certified. Since certification is an atomic event, the cer—
tification order is a total order. Thus, MVSG(L,<<) is acyclic, and so
L is 1-SR,

Two details of the slgorithm require some discussion. First, the
slgorithm can deadlock. For example, in this log:

wolx®1 £3 0% 1,121 wytal] wy122

T1 and T, are deadlocked due to certification condition C3. As in 2PL,
deadlocks can be detected by cycle detection on a waits—for graph whose
edges include T{*>Tj such that T, is waiting for Tj to become certified
(so that T, will satisfy C1-C3).

Second, C1-C3 can be tested atomically without wusing & critical
section. Once Cl1 or C2 is satisfied for some ri[xj] or '1[xi]. no
future event can falsify it. When C3 becomes true for some vilxi]. we
'lock’ xi so that no future reads can read versions that precede xi.
This allows C1-C3 to be checked one data item at a time. Of course, the

waits~for graph must be extended to account for these new version locks.

Two similar multiversion locking algorithms have been proposed
which allow at most one certified version of each data item. In
Stearns’ and Rosenkrantz’s method ([STEA81], the waits-for graph is
avoided by using a timestamp—based deadlock avoidance scheme. In Bayer
et al.’s method [BAYE80s, BAYE80b], a waits-for graph is used to prevent
deadlocks., This algorithm consults the waits—-for graph before selecting
a version to read, and it always selects a version that creats no

cycles,

Multiversion locking slgorithms in which queries (read-only tranm-
sactions) are given special treatment are described in [CHANB2, DUBOS2,
BERNB2]} -

g e
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2.8 Combining the Techniques

The techniques described in Sections 2.4-2.8 can be combined in
almost all possible ways. The three basic scheduling techniques (2PL,
T/0, SG checking) can be used in scheduler mode or certifier mode. This
gives six basic concurrency control techniques. Each technique can be
used for rw or ww scheduling or both (62 = 36). Schedulers can be cen-
tralized or distributed (36 x 2 = 72), and replicated dats can be han-
dled in three ways (Do Nothing, Primary Copy, Votimg) (72 x 3 = 216).
Then, one can use multiversions or not (216 x 2 = 432), By considering
the multifarious variations of each technique, the number of distinct

algorithms is in the thousands.

To illustrate our framework, we describe some of the algorithms

that already bave appeared in the literature,

The distributed locking algorithm proposed for System R*® uses a 2PL
scheduler for rw and ww synchronization., The schedulers are distributed

at the DMs., Replication is handled by the do nothing approach.

Distributed INGRES uses a similar locking algorithm [STON79]. The
main difference is that distributed INGRES uses primary copy for repli-

cation,

SDD-1 uses conservative T/0 for rw scheduling and Thomas’ write
rule for ww scheduling. The algorithm has distributed schedulers and
takes the do nothing approach to replication [BERN80Ob]). SDD-1 also uses

conflict graph analysis, & technigue for presnalyzing transactions to
determine which run—time conflicts need not be synchromized.

A method using 2PL for rw scheduling and Thomas' write rule for ww
scheduling is described in [BERN81b]. Distributed schedulers and the do
nothing approach to replication were suggested. To ensure that the
locking order is consistent with the timestamp order, one can use & Lam—
port clock: Each message is timestamped with the local clock time when
it was sent; if a site receives a message with a timestamp, TS, greater
than its local clock time, the site pushes its clock ahead to TS. After
a transaction obtains all of its locks, it is assigned s timestamp using

the TM’'s local Lamport clock. Thomas’ majority consensus algorithm was
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one of the first distributed concurrency control algorithms, It uses a
2PL certifier for rw scheduling and Thomas’ write rule for ww schedul-
ing. Schedulers are distributed and voting is used for replication.
Each transaction is assigned a timestamp from a Lamport clock when it is
certified. This ensures that the certification order (produced by rw
scheduling) is consistent with the timestamp order used for ww schedul-

ing.

Each of these algorithms is quite complex. A complete treatment of
each would be lengthy., Yet, by understanding the basic techniques and
how they can be correctly combined, we can explain the essentials of

each algorithm in a few sentences.

Performance of these algorithms has been studied in [LINSB1,
LINN82a, LINN82b, LINN82¢c, LINN83, GARC78, GARC79, GELE78]. A

comprehensive comparison of these algorithms can be found in Section 4.
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3. Database Recovery Algorithms

3.1 Introduction

A datsdbase system (DBS) processes read and write commands issued by

users’ transactions to access the database. If a transaction fails in
midstream, or if the system fails, the database may be left in an
incorrect state. For example, if a money transfer transaction fails
after posting its debit but before posting its corresponding credit,

then the accounts are left unbalanced. The recovery algorithm of a DBS

avoids these incorrect states by eonsuring that the database only
includes updates that are produced by tramsactions that execute to com—
pletion., This section is a survey of recovery algorithms for central-
ized and distributed DBSs.

Computer systems can fail in many ways, only some of which are han-
dled by DBS recovery algorithms. We 1limit our attention to glean ‘
fajluzes in which s transaction, the system, or, in the case of a dis- f
tributed DBS, one site of the system, simply stops running. We do not
consider trajtorous fajlures in which components continue to run but
perform incorrect actions (see [DOLES82, PEAS80]). VWe further limit
sttention to goft fajlures in which the contents of main memory are

lost, but the contents of secondary memory (disk) remain intact. We do

not consider methods for recovering from disk failures, although methods
similar to those in this section apply (see [GRAYS81, GRAY81, HARD7?9,
HARD82, LIND79, LORI77, VERH78]).

We descxribe s model of centralized DBS recovery in Sectiom 3.,2. We

present four cannonical types of centralized DBS recovery algorithms in

Sections 3.3 through 3.6. We describe recovery algorithms for distri-
buted DBSs in Sectionm 3.7.
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3.2 A Model Of Centralized Database
System Recovery

We model a centralized database systom as a scheduler, a recovery

system, and storage,

Read/Urite/Commit/Abort
operations

SCHEDULER
ﬂluanuu/c\-ucnwtnum
operations
RECOVERY
SISTIM
- Judnrite s msr _ _ ..

f transfer -}
‘ allan )
1 stable 1
1 database :
: ¢ tob H
sors 1
) space §HEH§ !ﬂﬁﬂh |

L.

o ome oo - oo oo o e e oo o

Stornge

The storage component consists of buffer storage and stable
storage. Both are divided into physical pages of equal and fixed size.
Buffer storage models main memory. Buffer storage is relatively fast,

but of limited capacity, and it doesn’t survive system crashes, Stable
storage models disk memory and it is relatively slow, of (almost) unlim-

ited capacity, and it does survive crashes,

The gdatabase consists of a set of logical pages. We assume that
one physical copy (usually the most up-to-date copy) of each logical
page is stored in a portion of stable storage called the gtable dats—
base. Other portions of stable storage may be used by the recovery sys-
tem as nonvolatile scratch space in ways that will be described latex,

Izspsactions

A trapsaction is a program that can read from or write into the
databdase. A transaction can issue four types of commands: Read, VWrite,
Commit, and Abort. Read causes a page to be read from the database.
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¥zite causes a mev copy of a logicsl page to be written into the data-
base. Commit tells the system that the tramsaction has terminated and
that all of its updated pages should be permapently reflected in the
datadbase. Abort tells the system that the transaction blhas terminated
abnormally and that the pages it wrote into should be returned to their
previous state. (Commit and Abort may be issued by a process ocontrol-
ling the transaction, rather than by the transaction itself,) A transac-
tion can have only one Commit or Abort processed.

A transaction is gctjve if it has begun executing but has not yet
had its Commit or Abort processed.

Notation: Each command is subscripted by the tranmsaction that
issved it. For example, Roudi(Pj) is a Read jissued by transaction T; on
page j.

Ihe Scheduler

The scheduler controls the order in which Reads, Vrites, Commits,
and Aborts are passed to the recovery system. Altbough the scheduler
allows commands from different tramsactions to be interleaved, it
gusrantees that the resulting execution is gerislizable. An execution
is serializable if the effect is exactly the same as if the transactions
bad been executed serislly, ome after the mext, with no concurrency at
all, Many scheduling algorithms for attaining serializability ere dis-
cussed in Section 2., Versions of all of them are compatible with the
recovery algorithms described in this section.

The scheduler also guarantees that the execution is gecoversble.
An execution is recoverable if, for each tramsaction T;, T; is not com~
mitted until, for each page read by T;, the transaction that last wrote
that page is committed.

Rocoverability is needed to avoid errors such as the following.
Suppose Ti roads a page P, last written by 13 (which is still active),
Ti writes another page Py, and commits., Now, suppose Tj fails and s
sborted.” Aborting Tj cavses its write om P, to be undone, therebdy
rendering T*'s input imvalid. But, since T; camnot be aborted after
having been oommitted, Ti'a updates to Pl must remain in the database

_— -»v,'m i - -
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even though its input Pk is iavalid.

For definitions, we sssume that the schednler uses page-level two-
phase locking (2PL) [EAGES81]. Before outputting Roudi(Pj) (resp.
'tit.i(Pj)), the scheduler sets a read lock (resp. write lock) on page {
Pj for transaction Ti' Two transactions cannot concurzently own ¢OB— i
flicting locks on the same page, where read locks conflict with write ,
locks and vwrite locks conflict with read and write locks. If the
scheduler receives an operation for which it can’t set the corresponding

lock, it delays the operation until the lock can be set.

Vhen the scheduler receives a Conniti or an Aborti. it forwards the

operation directly to the recovery system. When the recovery system

acknowledges that the operation has been processed, the scheduler then
releases all the locks held by T;.

Two-phase locking ensures serializability (see (BERN82, ESWA76] for

proofs). The version of 2PL presented above also ensures recoverability
by requiring that a transaction hold its write locks until its Commit or

Abort is processed.

The Recovery System !

The recovery system processes the Read, Write, Commit, and Abort
commands it receives from the scheduler. It also handles system :

failures.

A system fajlure can interrupt the DBS at any moment, It causes
all processing to stop and the contents of buffer storage to be lost,
After the system recovers, transactions that were active at the time of
the failure cannot continue executing because the contents of msin
memory are now useless. Thus, after the failure and before processing
any other commands, the recovery system processes the restart command,

whose effect is to abort all active tramsactions.

To handle failures properly, it is essential that the Commit com—
mand Qg implemented in a single instruction, normslly a page write., If
it were to require more than ome instruction, & system failure could
interrupt s partially completed Commit, making it ambiguous whether the
transaction should be aborted during restart, Said differemtly, each i
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transaction must always be in one of three states: active, committed, or
aborted, and each state change must be implemented by an atomic instruc-—

tion execution,

Structurjng Scretch Soace

There sre soveral types of information that a recovery algorithm
stores in stable scratch space. It may store the identifiers of tram-
sactions that have committed, called the gcommit list. In this case, the
single instruction that implements Commit; is usually s write that sdds
'l‘i to the commit list. The recovery algorithm also may store a list of
identifiers of tramsactions that sre active, called the active list, and
those that bave aborted, called the abort list.

Recovery algorithms often store copies of pages that were recently
written on an apdjt trajil (sometimes called a jourpal or log). For each
write processed by the recovery algorithm, the audit trail may contain
the identifier of the transaction that performed the write, a copy of
the newly written page (called an tor—image), and a copy of the physi-
¢asl page in the stable database that was overwritten by the write
{called a before—image). Different slgorithws vary considerably in the
information they keep on the audit trail and in how they structure that

information.

Indo and Redo

Recovery algorithms also differ in the time at which they write
pages into the stable database. They may perform such writes before,
concurrently with, or after the stomic instruction that commits the

transaction that last wrote those pages,.

Suppose that a page written by an active transaction is written
into the 1atable database before the transaction commits. If the tran-
saction sborts due to a system or transaction failure, the recovery
algorithm must 3Rdo the write by restoring the previous copy (before-
image) of the page.

Suppose that s page written by an active transaction is pot written

into the stable database before the transaction commits., If a system

failure occurs sfter the transaction commits bdut bdefore the page is
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written into the stable database, the recovery algorithm must redo the
write by moving the page to the stable database.

In sverv recovery algorithm, the after-imsges produced by a tram-
saction must be written to stable storage (the database or scratch
space) bofozre the transaction commits., This is called the commit zule.
If it is violated, a system failure shortly after a tramsaction T; com~
mits could lesve the recovery algorithm with no stable copy of T;'s
after—-images, making it impossible to redo T;. ;

Every recovery slgorithm must slso obey the log ahead zple: if an
after-image is written to the stable database before the tramsaction ii
that wrote it commits, then the before-image of that page must first bde i
written to the sudit trail, Otherwise, a system failure counld occur
after the after-image is in the stable datsbase but before the before-
image is in the audit trail, in which case the write could not be

undone.

Categorizatjon of Recovery Algorithms

Recovery algorithms can be categorized based on the timing of
updates to the stable database. There are four types of recovery algo-
rithms Some may require undo but not redo, redo but mnot undo, both undo
and redo, and neither wundo =nor redo. These types of algorithms are !
described in Sections 3.3-3.6. :

3.3 Algorithms That Undo But Don’t Redo |

For each type of recovery algorithm, we present a gemeric algorithm
based on our datsbase system model, and then we list example implementa-
tions. We describe this generic version by explaining how each command i
is processed. In all of the algorithms, the first command processed for '
T; should add T; to the sctive list. %

(

For each operation, we mark by ’{Ack)’ the point at which the
recovery system canp acknowledge to the scheduler that the operation has

been completed. Sometimes the operation has additiomal work to do after

the acknovledgement is sent,
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londi(Pj). Copy Py from the stable dstabase into a buffer. {Ack)

'ritei(Pj). Copy the before—image of Pj (from the stable database)
to the audit trail. {Ack) Then® (after the disk acknowledges the write
in the audit trail), write the new copy of Pj into the stable database,

Commit,. Make sure all pages written by Ti are in the stable data-
base. Then write Ti into the commit 1ist., {Ack) Then delete it from
the active list.

Abort,. VWrite T; into the sbort 1list. Then undo all of T;'s
writes by reading their before-images from the audit trail and writing
them back into the stadle database. {Ack} Then, delete T; from the
active list.

Restart. Process Aborti for each T‘ on the active list. (Ack}

In this algorithm, all]l pages written by a tramsaction are written
into the stable database before the transaction commits. Thus, redo is

never needed, but an adbort may require undo.

It is actuvally pot mecessary to write an after-image into the
stable database jmmedjstely after the before-image is written into the
sudit trail. The after—image could be left in buffer storage for
awhile, provided it is written to the stable database before the tran-

saction commits as required by the commit rule,

This algorithm obeys the log ahead rule in processing 'titei(Pj);
the before-image of Pj is written to the audit trail before the after-
image is written to the stable database.

The order in which writes are applied to stable storage is quite
sensitive in this (and most other) recovery algorithms. In this algo-
rithe, for example, ip processing co-liti it is incorrect to dolete Ti
from the active list before writing it into the commit list.

Remember that a system failure cam occur during the processing of a

lostart{ So Restart must slso take care tc reload the curremt active

¢ In every slgorithm, we use ‘then’ to mean ‘wait for the previous step
to complete before proceeding to the mext step’.
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list into stable storage in order that it will be resilient to an system

feailure (followed by another Reostart).

After Commit, or Abort;, has been processed, the aundit trail
copies of pages written by T; are no longer needed and can be returned
to free space. The slgorithm for garbage collecting these aundit trail
pages depends principally on the audit trail’s dats structure. We will
not discuss garbage collection issues for any of the recovery methods

described in this section,
The Prime Algorithmw

This type of recovery slgorithm is used in s database system pro-
duct offered by Prime Computers [DUBO82], and in the DDM database system
being developed at CCA [RIES82].

In Prime's algorithm, each page in the stable database has a
pointer to its before—image in the audit trail. Each before—image in
the sudit trail points, in turn, to the mext older before—image of the
same page. Also, each physical page carries the transaction identifier
of the transaction that wrote that particular copy. And, for each
asctive transaction there is & convenient way to obtain a list of all

pages it has written,

The page pointers are used for two purposes, First, to process an
Abort, the pointer in each stable database page makes it easy to undo
the aborted transaction’s writes, Second, they belp avoid concurreacy

control conflicts between queries and updates, as follows.

h A guery is a resd-only transaction. Reads issued by queries are
not locked in the scheduler but are passed directly to the recovery sys-—
tem (without being delayed). When the recovery algorithm receives the
} first resd issued by s query T;, say Rendi(Pj). it reads the commit list
i and then selects the newest copy on the chained list of Pa copies whose
[ transaction identifier is on the commit 1ist. Subsequent reads by Ti
h are processed in the same way, using the copy of the commit list that
) was read when the first Read; was processed. By reading in this way,

queries see a consistent copy of the database, yet they do not set read

locks that might delay update transactions,
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Another undo/mo-redo algorithm is described in [RAPP7S]).

3.4 Algorithms That Redo But Don’t Undo
In the generic algorithm, each command is processed as follows.

Rcadi(Pj). 1f T, previously wrote Pj. then copy the after-image of
Pj into a buffer., Otherwvise, copy Pj from the stable database into a
buffer, (Ack}

Iritei(Pj). Write the new value of Pj into the sudit trail. ({Ack]

Commpit,. Write T, into the commit list. Then for esch page writ-
ten by Ti' copy the after—image from the sudit trail into the stable
database. {Ack} Then delete T; from the active list.

Avort,. Vrite '1'i into the abort list., {Ack} Then delete it from
the active list.

Restart, For each Ti that is on the active list but not on the
commit list, process Aborti. {Ack} For each 15 on the active list and

the commit list, process Connitj.

In this algorithm, pages written by & tranmsaction «re not written
into the stable database until after the transaction commits. Thus,

undo is never needed, but a Restart may require redo.

This algorithm cbeys the commit rule because the after—image of
pages written by 'I‘i are stored on the audit trail before T, commits, It
also obeys the log shead rule, since no after—imsge of & transaction is

written into the stsble database before it commits.

Implementations of this slgorithm are described in [LAMP76,
MENA79]. This type of recovery slgorithm is used in the INGRES Database
System [STON79] and in SDD-1 [(BERNBOD].
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3.5 Algorithms That Redo And Undo
In this algorithm, commands are processed as follows.

le.di(Pj). If T; previously wrote Pj. then copy the after-image of

Pj into a buffer, Otherwise, copy Pj from the stable database into a
buffer. (Ack]}

'titei(Pj). Copy the before—image and the after-image of Pj into

the avndit trail. {Ack} Then, sometime later, write the after-image into

the stable database.

Conmiti. Write T, ioto the commit list, Then, for each page writ—
ten by Ti’ write the after~image into the stable database (if it hasn't
already been dome). {Ack) Then, delete T, from the active list.

Aborti. Write Ti into the abort list, Then, for each page written
by Ti' if its after-image has already been written into the stable data-
base, write its before-image into the stable database. {Ack)} Then

delete Ti from the active list.

Restart. For each Ti on the active list and the commit list, pro-
cess Conniti. For each Ti on the active list but not on the commit

list, process Abort;. (Ack]
Note that Abort may require undo and Restart may require redo.

This slgorithm obeys the commit rule, since the after—image of each
page written by Ti is written into the audit trail before T, commits.
It also obeys the log ahead rule, since the before—image of each page

written by T; is written into the stable database.

One can improve the performance of this algorithm by using a varia-
tion proposed by Gray [GRAYS81]. Gray's algorithm processes commands as

follows.

leldi(Pj). If '1‘i previously wrote Pj' check to see if the after-
image is in buffer storage. If not, copy Pi from the stable database to
e buffef., {(Ack)

lritoi(Pj). Copy the before—image of Pj into buffer storage unless
it is slready there. VWrite the after—-image of Pj into buffer storsge;

R
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Another undo/no~redo algorithm is described in [RAPP7S].

3.4 Algoritbhms That Redo But Don’t Undo
In the generic algorithm, each command is processed as follows,

leudi(Pj). If '1‘1 previously wrote P., then copy the after-imsge of

Pj into a buffer, Otherwise, copy Pj from the stable database into a
buffer. {Ack}

'titei(Pj). Vrite the new value of Pj into the audit trail, ({Ack}

Conniti. Vrite T; into the commit list. Then for each page writ-
ten by Ti' copy the after—image from the audit trail into the stabdble
database. {Ack]} Then delete T; from the active list.

Aborti. Write Ti into the abort list. {Ack} Then delete it from

the active list.

Restart. For each Ti that is on the active list but mnot on the
commit 1list, process Abo:ti. {Ack} For each Tj on the active list and

the commit list, process Co-nitj.

In this algorithm, pages written by a transaction are not written
into the stable database until after the transsction commits. Thus,

ando is never needed, but a Restart may require redo.

This algorithm obeys the commit rule because the after-image of
pages written by Ti sre stored on the audit trail before Ti commits, It
also obeys the log shead rule, since no after—image of a transaction is

written into the stable database before it commits.

Implementations of this algorithm are described in [LANP76,
MENA79). This type of recovery algorithm is used in the INGRES Database
System [STON79] and in SDD-1 [BERNSODG].
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this step must not overwrite the bdefore—image. {Ack) Sometime later,

write the before-image into the audit trail, lesaving s copy of the
sfter—image in buffer storage. The after-image may be written into the
stable database any time after the before-image is written into the
sudit trail. Once the after—image is written both to the aundit trail
and the stable database, it may be removed from buffer storsge.

Commit,. After all the after-images of pages writtes by T; bhave
been written into the sudit trail, write Ti into the commit list. ({Ack}

Aborti and Restart are the same as the generic algorithm.

This algorithm obeys the lo;_ahead rule because the before-image of
each page is written in the audit trail before the after-image is writ-
ten in the stable database. The commit rule is also satisfied since

Ti's after—images are written into the audit trail before T; commits.

WVhen all after-images written by Ti bave been writtem into the
stable database, Ti can be deleted from the active list. This tells

Restart that Ti does not need to be redone.

The main benefit of this algorithm is that the decision to write
pages into stable storage is usually left to the database system’s
buffer management algorithm, The recovery algorithm writes into stable

storage only when the commit or log ahesd rule requires it.

A detailed implementation of this algorithm that incorporates
checkpoints, end in which transections write records instead of entire
pages, appears in [LIND79].

3.6 Algorithms That Don't Undo Or Redo

In the generic algorithm, each command is processed as follows.

lond‘(Pj). If ‘1‘1 previously wrote Pj, then copy the after—image of
Pj into a buffer, Otberwise, copy Pj from the stable database into a
buffer, (Ack)
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'ritei(Pj). Write the after—image of Pj into the audit trail,
{Ack]}

Commit,. In a single instruction, write the after—images of all

pages vwrittem by I} into the stable database and delete T1 from the
active list. (Ack]}

Aborti. Write Ti into the abort list. {Ack)} Then delete it from
the active list,

Restart. For each T, on the active list, process Abort . {Ack}

Unfortunately, this description isn't very informative because it
relies on a magical instruction that implements commit without even
using a commit list, Notice that if the magical instruction 4is avail-
able, then undo isn’t needed because & traasaction’'s after-images are
not written into the stable database before it commits, and redo ismn’'t
needed because a transaction’s after-images are written into the stable

dstabase in the instruction that commits the transaction.

We will describe an implementation of the Commit instruction simi-
lar to one presented in [LORI77].

Lorie’s Shadow Page Algorithm

Assume that the stable database is partitioned into files
{Fl....,FZ]. each of which is a sequence of logical pages. Each file,
Fj' has a page table, PTj. whose entries point to the pages of Fj' That
is, PTj[k3] contains the address of the k-th page of FJ‘ this page is
denoted ij. Assume that each page table fits on onme page in the stabdble
database, The stable database also contains in s fixed address a master

xecord, M, that points to the n page tables; M[j] contains the address
of PTj.

Abort and Restart are processed as in the generic algorithm, Read,

Write, and Commit are processed as follows.

For each file, Fj‘ the first Read or Write that T, issues on a page
of Fj causes the recovery algorithm to make a copy of PTJ in buffer
storage, denoted PTJ‘. For each page ij that T; writes, PTJi[k] will
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point to the after—-image of that page in the audit trail. (The other

eantries in PTji are irrelevant,)

loadi(ij). If Ti previously wrote Pj. then copy the after-imsge
of Pj from sddress PTjk[ksl into s buffer. Otherwise, use N to find PTJ

and copy ij from address PTj[kal in the stable database into a buffer.
{Ack)

'ritei(Pj). Vrite the mew copy of ij into the sudit trail, Then
assign PTjilk] the address of that audit trail page. ({Ack]}

Co-niti. Copy M into buffer storage. For each file Fj that 'l'i
wrote into, use (the buffer copy of) M to find PTj and copy it into an
empty page of buffer storage. (There are nov two page tables for Fj
connected to T,: the buffer copy of PTj that was just read, and Prji')
For each page ij that was written by Ti’ assign to the buffer copy of
PTj[ksl the contents of PTji[k]. Then, write PTj into a pew location in
scratch space; demote this mnew copy of PTJ by PT}. Then, for each Fj
that T; wrote into, assign to (the buffer copy of) M[j3] the address of
PT;. Then write M back to its fixed address in stable storage. {Ack}

The commit slgorithm prepares a scratch copy of the page table
(PT;). This is accomplished by assigning to M[j] the address of PT3 for
each file Fj that T, wrote. By writing N back to the stable database,
the old copies of the page table (PTj) are replaced by the new ones

L
(PTj).

The instruction that commits T; is the one that writes the updated
M back into the stable database. Before this write, any read will use
the old copy of M to read the before—imsge of any page written by T;.
After this write, it will read the after—image of any such page.

The recovery algorithm can commit only one transaction at a time.
That is, Commit is a ocritical section, If two transactions were
(incozrectly) to commit concurremtly, esch transaction might read s copy
of PTj into buffer storage, change the pointers to pages it wrote, and
write that copy of PTj to the audit trail. Thus, two copies of PTj
would exist. Whichever transaction updated N first would lose its

updates to PTJ. since they would be overwritten by the second transsc-
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tion wvhen it instslled jts copy of PT; by updating M.

A version of Lorie’s algorithm is implemented in System R’'s
recovery manager [GRAYS1].

3.7 Recovery In A Distributed Database System

A distributed database system (DDBS) consists of a set of sites

connected by a metwork. Each transaction can read or write dats stored

at any of the sites.

We model a DDBS by a set of processes called datas mocdules (DMs) and
transaction modules (TNs). A ‘Dl is 8 centralized datadbase system as
defined in Section 3.2. It processes Reads and Writes on pages stored
at that DM. It also processes Commits and Aborts, which permanently

install or undo the writes of a transaction at that DN.

A T interfaces transactions and DMs. Each transaction, Ti' sub-

mits commands to one TN, say TN,. To process Read, or Write,, ™, sim-

s
ply sends the command to the DM that stores the data being read or writ-
ten. Let Activei be the DMs at which Ti vas active., To process Aborti.
TH, must ensure that every DM in Active; processes Abort;. To process
Commit,, TM, should try to ensure that every DM in Active; processes

Conmiti.

Unfortunately, TMs and DMs may fail at unpredictable times. Tis
must process commands so that such failures never cause it to produce

incorrect results.

We assume that process (i.e., TN and DN) failures are ‘clean’, If
s process does not produce an expected response to & message vithin a
timeout period, then the process has freally failed. If omne process
believes another process is down, then all processes believe that the
process is down. And, when a process grecovers, it recognizes that it

bas just recovered from a failure and runs a special ‘reintegration pro-

tocol’.™ Mechanisms that support these assumptions are beyond tbe scope
of this section. (See [ATTAR2, HAMMSO, PARKS82, WALT82]).)
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Each TM keeops an active list, commit list, and abort list in stable
storage. And, for each T; on the active list, it maintains Active; in
stable storage. VWhen it receives a Read or Write from Ti' it sends the
command to the appropriats DN and adds that DN to Activei. For the
first such Read oz Write, the TN also adds T; to its active list, It
processes Abort and Commit as follows,

Aborti. Add Ti to the abort list. Then, send Aborti to each DM in

Activei. Wait for every DN to acknowledge that it processed Abort,.
{Ack} Delete T; from the active list.

Conniti. Add Ti to the commit list. Then, send Co-niti to each DM
in Activei. Wait for every DN to acknowledge that it processed Conniti.
{Ack} Delete T; from the active list.

If a TN fails and later restarts, then it processes a Restart in
the usual way. For each 'l'i on both the commit list and the active list,

process Commit,. For all other Ti on the active list, process Aborti.

If a TM, say Tﬂ.. discovers that & DN, say nub, has failed, then it
normally processes Aborti for each T1 that has nlb in Activei. But what
if le is in Activei and TI. has already sent Co-niti to other DNs in
Active,? In this case it can’t abort T; because T; already may be com-
mitted at some DNs, Instead, it must wait for DMy to recover. When it
does, Tl. sends Commit, to Dib. too.

3.8 Two-Phase Commit

Each TM must obey the commit rule. That 4is, it must not send

Commit; to any DN until every DM in Active; has Ti's after-images on
stable storage. Otherwise, a DM in Active; may:

1. Fail before receiving Commit;
2. Upon recovering, discover from Tl. that Ti has committed

3. But be unable to process Co-lti because it lost some of T.'s
af ter—-images due to the failure
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To obey the commit rule and thereby preveat (3), M, can use the
tvo-phase commit protocol for processing Commit commands [LANP76].
Phase one begins when TN, receives Commit;. It then sends a command
called Bndi to each DM in Activei. A DM processes Endi by first ensur-
ing that T;'s after—images at that DN are on stable storage and then
sending an acknowledgement to TM,. When TM, has received the ack-
nowledgement from every DM in Active;, phase ome is done. {Ack) 1In

phase two, TM, sends Commit; to each DM.

Since TM, does not send Commit; to apy DN until overy DN has ack-
novledged End;, no DM in Active, will process Conniti until every DM has

Ti's after—image on stable storage.

If a DM, say DM,, fails before acknowledging End,, then TM, won't

leave phase one. Since TH‘ cannot be sure that Dib will be able to

process Couniti when it recovers, TH. must either wait for le to
recover or sbort T; by sending Abotti to every DM in Active;. In prac-
tice, 1!.

the Endi's; if it hasn’'t received ap acknowledgement of some Endi by

simply waits a prespecified timeout period after distributing

this time, it assumes the DM has failed and aborts Ti‘

Until s DN processes End;, it may unilaterally decide to abort T;
by sending an Aborti command to T!.. Once a DN acknowledges Endi, it
loses its right to unilaterally abort T;, snd may only abort T, if
directed to do so by TM..

3.9 Three-Phase Commit
The TM algorithm presented above has a serious disadvantage. Sup-

s sends End; to Dy, Diy, acknowledges End;, and then ™™, fails.
Since le doesn’'t know whether Ti will commit or abort, it has to wait

pose TM

for Tl. to recover. In particular, it must hold Ti's locks until Tl.
recovers, If Tl. is supervising many active transactions, large por-

tions of the database may be locked and unavailable until TM, recovers.

VWe can avoid this problem by providing each TM with one or more
backup TMs. If a TM fails, the backups can take over its functions,
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Onoe such algorithm is three-phase sommit ([SKEES1a, SKEES2a,
SIBEGZb.,W§‘EESIb]. Each backup for TM, maintsins s commit list, Q,.
To process Co-niti TH. behaves as follows,

1. Tl. sonds Endi to each DN in Activei. Then it waits for all DMs to
scknowledge their End,'s.

2. ™M,
processes Preco-niti by adding T; to its copy of CL,. and then sond-

sends a command called Procon-iti to each backup TN. A T

ing an scknowledgement to TN,. TN, waits for all backups to ack-

novledge Precommit;.
3. Tl‘ sends Conniti to each DN in Activei.

Essentially, this is the two~phase commit protocol with s new phase
added (Step 2).

If a backup TN fails, Tl. can ignore the failure if the number of
backups is still scceptably large; otherwise, it should acquire amother
backup TM to replace the failed one.

Suppose TN. fails. When the backups discover tbe failure, they
elect ome of their member TNs, say My, to replsce TM_ . After TM, is
elected, every other backup TN sends its copy of CL, to TM,. TN, takes
the uanion of those copies and distributes the result to other backups,
This becomes everyone’'s copy of CL,. Vhen this process is complete, Th,
tells all DMs that it has taken over TN, 's functions.

If a DM wants to know what happened to a particular transaction,
T,, that was supervised by Il.. it asks TM,. 1If T; is in le's CL..
then TN, tells the DM to commit T,;; otherwise, it tells the DN to abdort
T;- Thus, a transaction that was supervised by M, is committed if and
only if it reached the second phsse of three-phase commit and at least
one of its precommits reached s backup TN (that didn't fail),

The slgorithm for electing a backup TN to replace TM, is easy, as
long as none of the backups fail or recover from failure during the
election. Assume each TN has a unique identifier. To elect a replace-
ment for Tl.. each backup exchanges its identifier with every other
backup. The TM with the largest identifier wins the election and takes
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over.

I1f backvp TMs fail or recover from failure durimg the 6fgct£6i, the

above algorithm can misbehave. Each of two TNs can conclude that it won
the election, Algorithms to prevent this behavior are discussed jn
{GARC82, SKEES81a].

It is possible that TH, and all of its backups fail during s short
time period — too short for replacement backups to be acquired. This
is called a tota] failuge of TN,; no TN can ever take over its function,
DMs must wait until Il. and enough of its backups have recovered so that
the correct status of TN, ’s transactions can be determined. Algorithms

for recovering after total failure are discussed in [SKEES1].

Many variations on three- phase commit protocols have been proposed
and analyzed. See [ALSB78, ALBS76, O©OO0P82, EAGES1, HAMMB80O, LAMP7S,
MENA78, TRAIS2].

3.10 Replicated Data

If a DK fails, transactions that need the failed DMN's data =ust
wait for the DM to recover. To svoid this delay, the DBS can geplicste
dats; that is, it can store parts of the database at more than ome Di.
If one copy is unavailable due to a DN failure, other copies can be used
instead.

Many concurrency control algorithms are known for keeping multiple

copies of each page mutually consistent, However, even if concurrency

control is performed correctly, failures can cause tramsactions to mal-

function.

For example, suppose P1 has copies Pl. and Plb at DI. and le
(resp.), and P2 has copies P2c and Py, at nlc and Dld. Il reads P1 and

writes Pz; Tz Tesds P, and writes Pl. Replicated dats is handled by
the ‘intuitive’ algorithm: to read data, read any copy; to write data,
write all available copies. The following execution obeys these rules,

yet it is imcorrect.

;
b
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n.ldl(Pl.) D.d-flill 'tit.l(ch)
l..dz(?za) D..'f.ill 'tit.z (Plb)

This execution is incorrect because T; reads (a copy of) P; before T,
writes Py, while T, reads (a copy of) P, before T, writes P,. The first
condition means that T; appears to precede Ty, while the second condi-
tion means that Tz appears to precede T,. These conditions cammot both

hold in a serial execution, and so the given execution is imcorrect.

Algorithms for correctly processing commands on replicated dats in
the presence of DM failvres appesr in [ALSB78, ALBS76, COOP82, EAGES1,
GIFF79, HAMMS8O, MENA78, THOM79]. No consensus on tbe best approach to
this problem has yet emerged.
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4. Porformance of Distributed Concurrency Control

Many factors effect the performance of a distributed concurrency

algorithm:

1. 10 delay,

2, communication delay,

3. ratio of read-only to write transactions,

4. database size, transaction size,

5. system multiprogramming level,

6. distribution and replication of the database,
7. overhead of deadlock detection,

8. and system load, defined as the product of transaction size and mul-
tiprogramming level divided by the database size.

Our simulation study of the performance of distributed concurrency con-
trol algorithms shows that four of these factors have more significant
impact than the others: IO delay, communication deley, tramnsaction size,
snd system load. Hence we divide our simulation results into groups and
discuss them separately by classifying the system environment as either
J10-bound or communjcation bound, and as either short transaction loaded
or long transaction loaded. We consider a system to be IO bound if

queving for I0 or CPU resources is a more significant problem than queu-

ing for communication channel; and we consider a system to be communica-
tion bound if queuing for communication channel is a more significant
problem than queuing for IO and CPU resources. We consider a system to
be short transaction loaded if the average number of data items
requested by the transactions (or transaction size) is less than 0.05%
of the database. The system is long tramsaction loeaded if the average
is larger than 0.2% of the database. If the average is between 0.05%
and 0.2% of the database, the classification of the system as short
transaction loaded or long transaction loaded depends on the system

load. Details of the classification can be found in Figure 4.1.

Thus we present four categories of system environments: short transac-

tion 1loaded and 10 bound (SI0), short tranmsaction losded and communica-
tion bound (SCM), long transaction loaded and IO bound (LIO), and long
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Sgsten Load < 10% > 10%
Trans Size
< 0.05% Short Short
0.05%<0.2% Short Long
> 0.2% Long Long

Trans Size: Average number of datas items requested by a

transaction as a percentage of the database size,
System Load: frnn: Size multiplied by the multiprogramming

evel,
Database size: Total number of data items in the database.
Figure 4.1 Sgstem Classification
(Short Loaded or Long Loaded)

transaction loaded and communication bound (LCM), For each of these
four environments, we compare the performance of various concurrency
control algorithms, taking into consideration the factors that are got
used to classify the system environment —— i.e. multiprogramming level,
ratio of read-only to write transactions, distribution and replication

of the database.

We first describe, in Section 4.1, the distributed DBMS model that
we use to eovaluate these algorithms, We then define and describe, in
Section 4.2, the concurrency control algorithms that we eveluate. We
compare these algorithms in Section 4,3.1 through 4.3.4 for each of the
four environments, In Section 4.4 we summarize the results of Section

4. Details of the simulation results can be found in the Appendix. e

To use this section as a design guide, a system designer must first
classify his system environment, using the following three parameters.
First, he must decide whether his system environment is IO bound or com-—
munication bound. Second, he must estimate the average number of data
items, as a percentage of the total number of data items in the data-
base, requested by a transaction (transaction size). Third, he must
estimate the average system load, which is the product of the transac-
tion size and the multiprogramming level of the system (number of tran-
sactions running concurrently). Using these three parameters and Figure
4.1, the designer can find bis system classification, For each classif-

icetion, he can find the comparison of various distributed concurrency

control algorithms in Section 4.3.1 through Section 4.3.4,
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4.1 Performance Model

We assume that there are two kinds of tramsactions: read-only tran-
sactions and write transactions (update transactions). Write transac-
tions always read what they write, and write what they read. This
assumption may seem restrictive, but it is a good approximation of real
applications. Our earlier simulation results [LIN81a) showed that the
total number of requests and the ratio of read-only requests to write
requests active at any moment in the system have much greater impact on
the system performance than the ratio of read-only to write transac-
tions. Moreover our analysis shows that a more general assumption of
transactions would not favor any concurrency control algorithm; thus for
performance comparison of the algorithms, this assumption would not dis-
tort the resnlts, To use the results of this section to evaluate the
performance of a system that has transactions reading more than writing,
the ratio of read-only to write transactions in the system can be

adjusted upward.

A read-only tramsaction consists of a sequence of read-only
requests, and each regquest reads a data item. A write transaction con-
sists of a sequence of write requests (update requests), followed by a
two-phase commit, Requests from a transaction are processed sequen—
tially; snother request is initiated only after the previous one has

been successfully processed.

As described in Section 2, a distributed DBMS consists of TNs,
schedulers, and Dls, Each transaction is managed by a TM, which
sequences its requests and sends them to the appropriate scheduler to be
processed, If the scheduler site is different from the TM site, a com
munication delay is incurred.

If a request is read-omnly, the scheduler requests a read lock for
the requested data item (assuming that a two phase locking algorithm is
used). Depending on the particular concurrency control algorithm used,
some lock managers may grant the lock without checking whether the

request conflicts with another transaction, Other lock managers may

check for the conflict. If & conflict is found, the read-only request
waits and incurs & blocking delay. Depending on the concurrency control
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algorithm used, the scheduler may initiate a deadlock detection when

blocking occurs, thus incurring processing and possidbly communication

: overhead. When the lock for the requested dats item is obtained, the

scheduler sends the read-only request to the appropriate DM, and the
read-only request incurs & processing delay. A resd-only transsction

ends after all its requests have been successfully processed.

A write request is processed in a manner similar to a read request,
except that successful processing of all write requests of a transaction
is always followed by a two—phase commit, and & write transaction ends
after the <two-phase commit is successfully processed (two—phase commit
is the only reliability algorithm that we use in our simulation of con-

currency control algorithm),

If timestamp based algorithms are used, a timestamp is assigned to
each transaction, and requests from the transaction inherit the transac-
tion timestamp. Each data item also has read and write timestamps that
record the timestamps of the transactions that last read from (or write
into) the data item. For all the timestamp algorithms that we have
evaluated, the scheduler always resides at the site of a DM, and a

request is always sent to the scheduler at the site where the data is to

be accessed, When a scheduler receives a request, it compares the
timestamp of the request with the read and write timestamp(s) of the
data item, and it may or may not delay the request, depending on the
particular algorithm used. If the request is not blocked, it is sent to

the DM at the scheduler site, and the request incurs a processing delay.

We simulate both IO bound and communication bound system environ-

ments. In the I0 bound environment, we explicitly simulate queuing for

R e N PSP

local processing, which combines cpu and I0 processing. We differen-
tiate between local processing of simple messages, such ss lock request,
lock release, and deadlock detection, and local processing of data
requests. The latter needs more processing time than the former, 1In

o
the IO bound environment, we do not simulate queuing for communication ]
i
channels, Communication delay is simply simulated by a delay drawn from |

a probaﬁilistic distribution.
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In the communication bound environment, we eiplicitly simulate

queuning for communication channels, but not for 1local processing

resourcos. In some cases, we differentiate between message and dats
transmission, The 1latter takes longer than the former. We simulate

local delay (combining IO and cpu processing) by drawing a random number

from a probabilistic distribution,

The performance parameters that we use to compare distributed con-

currency control algorithms include read throughput, write throughput,

average read response time, and average write response _time, Read ?
throughput is the number of read-only requests successfully completed

per time unit; read-only requests processed and subsequently aborted are
; not included. The write throughput is similarly defined. Read response
i time is measured from the time a read-only request is initiated by a TM
to the time when the next read-only request of the same transaction is
initiated by the same TM. Thus, it may include communication delay, '
blocking delay, and processing delay. Average read response time aver—
ages over the response times of all successfully completed read-only

requests. Average write response time is similarly computed.

In addition to blocking delay, communication delay, and processing
delay, other factors also affect aversge response times and throughputs
(e.g., transaction abortion, deadlock detection, and multiple versions
of data). The concurrency control algorithms evaluated in this section
can be differentiated by the way they trade off these factors, Some
slgorithms trade longer blocking delay for fewer transaction abortions,
and others trade reversely. Some trade more communication delay for
less blocking delay, and others trade reversely. We describe these
algorithms in the next section, In Section 4.3, based on the total
throughput, we compare and rank these algorithms. Detailed data of the

performance parameters can be found in the Appendix.

{
4
i
|
!
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4.2 Description of Algorithms

The slgorithms that we will consider are listed below, Selection
of these algorithms is based on our earlier heuristic evaluation
roported in [BERN81s]. The selected algorithms were shown to perform
better than the algorithms discarded. Names of some algorithms are
linked by the conjunctive ‘and’ (e.g. Primary Site and Primary Site).
The term before the conjunctive describes the method used for read
requests, and the term after the conjunctive describes the method wused
for write requests, These algorithms are described briefly in this sec-
tion and summarized in Figure 4.2. Details of these algorithms can be
found in the references.

1. Primary Site and Primary Site Two Phase Locking (C-C)
2. Primary Copy and Primary Copy Two Phase Locking (P-P)
3. Basic and Basic Two Phase Locking (B-B)

4. Basic and Primary Copy Two Phase Locking (B-P)

5. Basic and Primary Site Two Phase Locking (B-C)

6. DDM Multiple Version and Optimistic Two Phase Locking (DDM)
7. Basic and Optimistic Two Phase Locking (Opm)

8. Majority Consensus Timestamp (Maj)

9. Wait-Die Two Phase Locking (Die)
10. Basic Timestamp (BaT)
11. Multiple Version Timestamp (MvT)

12. Dynamic Timestamp (Dyn)

The SDD-1 algorithm is not explicitly covered because the Dynamic
Timestamp algorithm is an improved versiom of it ([LIN79, {LIN81]).
Neither is the Conservative Timestamp algorithm covered, because this
algorithm essentially executes transactions serially in timestamp order,
Thus it can perform better than other algorithms only when the transac-
tion size is very large and the system load is extremely heavy and con~

current execution of transactions becomes counterproductive.

The Primary Site and Primary Site method is essentially a central-
ized two-phase locking method. All requests for read locks and write
locks are sent to and processed by a designated primary site, which may
use backup sites to improve resiliency. This method trades fewer tranm~

saction abortions for more transaction blocking, and it checks for lock




Distributed Datsbase System Designer Handbook Page 4-7
Performance of Distributed Concurrency Control Section 4

conflict as early as possible. It detects deadlock as early as possi-
ble, and it avoids distributed deadlock detection; but it has s
bottleneck at the primary site.

The Primary Copy and Primazy Copy method is a generalized version
of the Primary Site and Primary Site method. All requests for read
locks and write locks are sent to and processed by a designated primary
copy site, However, primary copy sites for different data items may be
different, thus distributed deadlock may occur. This method also trades
fewer transaction abortions for more transaction blocking, and it checks
lock conflict as early as possible. It requires distributed deadlock
detection, but it may delay deadlock detection to reduce communication

overhead.

The Basjic and Basic method sets read locks and reads data locally
if a 1local copy is available; otherwise it locks and reads the closest
copy. It sets write locks globally. For each update request, an update
lock is requested from all copies, and the update request is granted
only after locks from all copies are obtained. This method trades fas-
ter read-only transaction response time for slower write transaction
response time. It also trades more transaction blocking for fewer tran-—
saction abortions. It checks for lock conflict and deadlock as early as

possible, and at the expense of more communication overhead.

The Basic and Primary Copy method processes read requests as the
previous method does, but it requests write locks only from a designated
primary copy. This method checks for most lock conflict as soon as pos-
sible, but it may delay distributed deadlock detection to reduce commun-
ication overhead. This method also trades fewer transaction abortions

for more transaction blocking.

The Basic apd Primarv Site method is similar to the 1last method

except that update lock requests are seat to a central site instead of
to several primary copy sites. Thus deadlock detection is more central-
ized than in the previous method, and overhead is more centralized at

the primary site,

The DDM [CHAN82a, CHANS82b] method avoids conflict between read

requests and update requests by keeping several versions of each dats
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item. For each uvpdate request, DDM 1locks 1locally (if a 1locsl copy
exists, or locks the closest copy). The update lock is propagated to
other copies at transaction end. Detection of most conflicts among
update requests is delayed until transaction end. Thus blocking delay

is minimized for most write transactions at the expense of more transac-

tion abortions at transaction end.

The Basic and Optimistic methcd sets read and update locks locslly,
if a locsl copy exists; otherwise it locks the closest copy. The update
lock is propagated to all copies when the transaction that holds the
updste lock ends., Thus, distributed lock conflict checking and deadlock
detection is delayed until a transaction ends., This algorithm reduces

transaction blocking delay at the expense of more transaction sbortions,

The Majority Consensus algorithm is similar to the Basic Optimistic
algorithm, Each transaction has two phases: a read phase and a commit
phase. During the read phase, a transaction reads locally if s 1local
copy exists; otherwise it reads the closest copy. Timestamps of data
items read by a transactions are recorded. During the commit phase,
both read-only and update transactions must be certified by comparing
the timestamps of the data read by each tramsaction to the transaction
timestamp. Because of the certification step, read-only transactions
require more communication overhead in this algorithm than in the Basic
Optimistic algorithm. The details of the algorithm can be found in
[BERNS81a,THOM79]. If the algorithm is modified to favor read-only tran-
sactions so that read~only transactions need no certification, then it
requires no more communication overhead than the Basic Optimistic algo-
rithm, This algorithm checks for lock conflicts as late as possible,

and it trades less transaction blocking for more trassactiom sbortions,

In the Yajt-Die algorithm, a unique sequence nuwber is attached to
every tramsaction. A transaction always locks locally if a local copy
is available; otherwise it locks the closest copy. The locks are pro-
pagated to other copies when the tranmsaction commits. Whenever a tran-
saction is blocked by amother tramsaction, the algorithm compares the
sequence numbers of the two transactions. If the blocked transaction
bhas a lower priority sequence number, it waits, otherwise it aborts,

This algorithm checks local lock conflict as soon as possible, out it
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checks distributed conflict at transaction end. It has no transaction

deadlock (at the expense of more transaction abortions).

In the Basic Timestamp method, a read and a write timestamp are
attached to each data item of the dstabase. Each transaction that reads
or updates the data item updates its read or write timestamp. Conflict
is dotected by comparing the timestamp of the transaction that reads or
writes a data item with the timestamps of the data item, and not by com
paring the timestamps of two transactions as done by the Wait-Die algo-
rithm, This slgorithm is similar to the Wait-Die algorithm becanse it
also avoids transaction deadlock. Unlike the Wait-Die algorithm, it has
no blocking delay and possibly has more transaction abortions. This
algorithm may have fewer transaction abortion than the Wait-Die algo-
rithm when most transactions are read-only, because it allows two tran-
sactions (s read-only and a write) to access the same data item simul-

taneously.

The Multiple Yersjon Timestamp algorithm is a generalization of the
previonus algorithm, It keeps several versions of each data item in
order to reduce conflict between read—only transactions and update tran-
sactions. Thus, this method trades more overhead of maintaining multi-

ple data versions for fewer transaction abortions.

The Dynamic Jimestamp algorithm [LIN79, LIN81] is an improved ver-
sion of SDD-1 algorithm; it is unique among all the algorithms that we
will compare for the following reasons. It requires transaction times-
tamps but not data item timestamps. It does not avoid transaction
blocking; thus it trades more transaction blocking for fewer transaction
sbortions. But it uses preanalysis of transactions to reduce unneces-—
sary transaction blocking. This algorithm may require a lot of communi-
cation overhead when many null write messages are needed [BERN82, LIN79,
LIN81], and its performance may depend on system load [LINB1]. Thus it

may perform poorly in some system environments.

The prismcipal characteristics of these algorithms are summarized in
Figure 4.2,
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B-B P-P C-C B-P BaT MvT DD Opm Maj Die Dyn

blocking/abortion P b b b a 'y a s a = b
lock conflict check s s s s s 3 x x 1 x s
desdlock detection s 1 1 1 1 1

Scheduler 2 2 2 2 t t 2,¢c 2,¢c ¢ 2 t
Location of Scheduler d d cn d d d d d a d d
Data Replication o p P P P P P P V P &1

transaction blocking is preferred.
: transaction abortion is preferred.
both blockins and abortion are used.
conflict or doeadlock is checked as soon ss possible.
: conflict or deadlock is checked as late as possible.
local conflict is checked as soon as possible, but
distributed conflict is checked at transaction end.
: the item does not apply.
two-phase locking scheduler.
: timestamp scheduler.
: certifier scheduler,
2,¢: mixed 2-phase locking and certifier scheduler.
cn: centralized,
d: distributed.
n: do nothing.
p: primary copy.
v: voting.

M=o B O

O~

Figure 4.2 Summary of Concurrency Control Algorithms

4.3 Performance Evaluation

4.3.1 Short Transaction Loaded § I0 Bound

In this section we compare the performance of distributed con-
currency control algorithms in a system enviromment in which most tran-—
sactions are relatively short and 10 resovrce is the performance
bottleneck. The comparison of these algorithms is summarized in Figure
4.3. The comparison is based on actual simulation results except for
the VWait-Die, Majority Consensus Timestamp, and Dynamic Timestamp algo-
rithms, The evaluation of the Wait-Die slgorithm is based om its simi-
larity to the Basic Timestamp algorithm; the evaluation of the Dynamic
Timestamp algorithm is based on the results of [LIN81); and the ovalua-
tion of the Majority Consensus Timestamp algorithm is based on its simi-
larity with the Basic Optimistic algorithm,

Figure 4.3 shows that five slgorithms perform better than others:

the Basic Timestamp, Multiple Version Timestamp, DDN, Optimistic, and
Wait-Die algorithms,
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In the short transaction loaded and IO bound envirorment, we found

that transaction abortion is a better strategy than tramsaction blocking

(i.e. it is better to abort tham to wait). The abortion strategy is
used by the Priic Timestamp and Multiple Version Timestamp algorithms, '
and to a large degree by the Wait-Die algorithm, We also found that it
is better to delay lock conflict detection than to detect lock conflict

early. Both the DDM and the Basic Optimistic algorithms use the delay
strategy.

Although the DDM algorithm uses locking for write transactions, and

the Optimistic algorithm unses locking for both read and write transac-—

tions, blocking occurs only among local transactions that access data
from the same site. Transactions running at different sites never block
each other. Write locks are propagated to other sites at transaction
end, then conflicts among transactions running at different sites are
detected and always result in transaction abortions., Therefore perfor-
mance of these two algorithms is closer to those of timestamp algorithms
than to those of two—phase locking algorithms. However, notice that the
DDM and Basic Optimistic algorithms always abort transactions at tran-
saction end, while the timestamp algorithms may abort transactions at an

earlier phase of their execution,

These five algorithms perform equally well in most cases, The
timestamp algorithms perform better than the DDM and Basic Optimistic
algorithms when the database is fully redundant (thus read-only transac-~
tions complete quickly), the R/W ratio is high (probability of comflict
among data requests is small), and local delay is large (local blocking
delay is 1large and abortion at transaction end is expensive). However
when the database is less redundant, the DDM and Basic Optimistic algo~ h
rithms perform slightly better than the timestamp algorithms. Both
read-only and write transactions require some remote data accesses and

take longer to complete, and this causes the probability of comflict

among transactions to rise and the timestamp algorithms to abort =more

transactions.

The Basic Timestamp algorithm performs as well as the Multiple Ver-
sion Timestamp algorithm, and the latter requires more overhead and

storage space for keeping multiple versions of data [LINN83]., Therefore
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the Basic Timestamp algorithm is preferable to the Multiple Version
Timestamp algorithm, unless the multiple versions of data are required
in any case for database recovery and resiliency. Similarly, the
difference in performance between the DDM and Basic Optimistic algo-
rithms is very small, and the former needs higher overhead and more
storage space for keeping multiple versions of data. The Basic Optimis-—
tic algorithm is preferable, unless the versions of data are required in

any case for database recovery and resiliency.

The Wait-Die algorithm performs slightly worse than the Basic
Timestamp algorithm when most transactions are read-only. When a read-
only transaction confiicts with a write transaction, the timestamp algo-
rithms never abort the read-only tramsaction, and they abort the write
transaction only when a nonserializable execution may occur. However
when most transactions are write transactions, the Wait-Die algorithm is
preferred because it performs as well as the Basic Timestamp method and
it needs no dats item timestamps, which require storage space and pro-

cessing overhead.

The Dynamic Timestamp algorithm performs best when most transac-
tions are read-omnly, communication is fast, database is almost fully
redundant, and preanalysis can be done on most transactions, In this
environment, the fast protocols, Rl, Rla, Riab, and R1b [LIN79], LIN82]
apply to most transactions. Assuming system conditions remain the same
except that the database is not redundant, the Dynamic Timestamp algo-
rithm still performs relatively well, because more efficient protocols
(R2, R2a, R2ab, and R2b) apply to most transactions. These protocols
are not as efficient as the group of Rl protocols, but they are rela-
tively fast compared with R3 protocol. 1In all other cases, either when
the communication is slow or when most transactions update the database,

the Dypsmic Timestamp algorithm is not efficient.

The Msjority Consensus algorithm performs reasonably well, but not
as well as the Basic Optimistic slgorithm, The Majority Consensus algo-
rithm as proposed in (THOM79] requires extra communication overhead for
read-only transactions. If the algorithm is modified to favor resd-omly

transactions, so that read-only tramsactions need not be certified, then

it would perform as well as the Basic Optimistic slgorithm,
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To summarize, in this environment transaction abortion is a better
strategy than transaction blocking, and delayed lock conflict checking
is a better strategy than early lock conflict checking,

B-B P-P C-C B~P BaT NvT DDN Opm Maj Die Dyn

R/W L/C Red

low * full
low low full
high low full
high high full
high high part
high low part

b part

XV Y-V N-N- N §
F VY- F ¥ ¥ ¥
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(Y Y CTXTOYToN
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Rank 1 is best and Rank 6 is worst,
Rank numbers have no absolute meaning. They only show relative
performance across a row, not across & column,
R/W: Ratio of Read—onli transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding
queuing delay
Red: Redundancy of the database
® : Does not matter

Figure 4.3 Performance Comparison: Short
Transaction Loaded § 10 Bound

4.3.2 Short Transactions § Communication Bound

In this section we compare the performance of distributed con-
currency control algorithms in a system environment in which most tran-
sactions are relatively short and communication channel is the perfor-
mance bottleneck. The comparison of the algorithms is summarized in
Figure 4.4. The comparison is based on sctual simulation results except
for the VWsait-Die, Majority Consensus, and the Dynamic Timestamp slgo-
rithms, The evalunation of the Wait-Die algorithm is based on its simi-
larity to the Basic Timestamp algorithm; the evaluation of the Dymamic
Timestamp algorithm is based on the results of [LIN81]; and the evalua-
tion of the Majority Consensus algorithm is based on its similarity to
the Basic Optimistic algorithm,

Figure 4.4 shows that seven slgorithms perform better than the oth-
ers: Basic-Primary Copy, Basic Timestamp, Multiple Version Timestamp,
DDM, Basic Optimistic, Wait-Die, and Dynamic Timestamp.
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Weo found that transaction abortion, similar to the SIO environment,
is s better strategy than transaction blocking, and that delayed lock

conflict detection is a better strategy than early detection, However,

because of the communication channel bottleneck, performance of the
algorithms that require extra communication messages degrade in some

cases.

The Basic Timestamp and Multiple Version Timestamp algorithms per-
form best in all cases. However, when the database is fully redundant,
the DDM and Basic Optimistic algorithms perform just as well, Read-only ‘
transactions anever incur communication delays, and write transactions {
incur communication delays only during the commit phase, Therefore
transactions finish fast, blocking delay is shorter, and abortion at

transaction end is less expensive.

The Majority Consensus algorithm, as proposed in [THOM79], does not
perform well ©because of the extra communication messages required for
read-only transactions, JIf the algorithm is modified to favor read-only
transactions, so that read-only tramsactions need not be certified, the

algorithm would perform as well as the Basic Optimistic slgorithm,

The Wait-Die algorithm performs just as well as the timestamp algo-
rithms in most cases. However, when most transactions are read-oaly, 1
the Wait-Die algorithm unnecessarily aborts more read-only transactions
than the timestamp algorithms, thus performing worse than the timestamp

algorithms.

The DDM algorithm performs as well as the timestamp algorithms when 9

the database is fully redundant. However, when the database is less

redundant and most transactions are read-only, its performance degrades
; as shown in Figuore 4.4. When the database is not fully redundant,
f read-only transactions require one extra commupication message, which

' causes a long delay in a communication bound environment.

The Basic-Primary Copy algorithm performs 10% to 20% worse than the
best slgorithms in all cases, because it incurs extra communication mes-
sages when obtaining locks from the primary copies, and it uses transac-

! tion blocking instead of transaction abortion. The Dynamic Timestamp '

algorithm performs best when most transaction are read-only and can be !
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preanalyzed. In this environment, the most efficient protocols canm be

used and communication overhead for null-write messages is minimized,

Since the Basic Timestamp algorithm performs as well as the Multi-
ple Version Timestamp algorithm, the former is preferable unless the
multiple versions of data are required in any case for database recovery
and resiliency. Similar observations apply to the DDN and Basic
Optimistic algorithms [LINN83].

Our conclusion is that in this environment abortion is better than
blocking, and that delayed lock conflict checking is better than ecarly
lock conflict checking. However, some algorithms that use these two

strategios may not perform well in some cases because they require extra

communication messages,

B-B P-P C-C B-P BaT MvT DDM Opm Maj Die Dyn

R/W L/C Red

low . full s 4 4 3 1 1 1 1 3 1 3
high low full 5 6 4 3 1 1 1 1 s 2 2
bigh high full 5 6 4 2 1 1 1 1 S 2 2
high low part s 6 71 3 1 1 &4 2 § 2 2
low low part 5 4 6 2 1 1 2 1 3 1 4
high high Dpart 4 5 6 2 1 1 3 1 5 2 2
low high part s 4 6 3 1 1 2 1 3 1 4

Rank 1 is best and Rank 6 is worst,
Rank numbers have no absolute meaning. They only show relative
performance across 8 row, not a columa,
R/W: Ratio of lond—on1¥ transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding
queuing delay
Red: Redundancy of the database
¢ . Does not matter

Figure 4.4 Performance Comparison: Short Transaction Loaded
" $ Communication Bound

4.3.3 Long Transaction Losded § 10 Bound
In this section we compare the performance of distridbuted con-
currency control algorithms in a system enviromnment in which most tram-
] sactions are relatively long and IO resource is the bottleneck, The
comparison is summarized in Figure 4.5. The comparison is based onm
actual simulation results exzcept for the Wait-Die and Majority Consensus
algorithms. The evaluation of the Wait-Die algorithm is based on its
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similarity to the Basic Timestamp algorithm; end the evaluation of the
Majority Consensus algorithm is based on its similarity to the Basic

Optimistic algorithm,

Figure 4.5 shows that three algorithms perform better than the oth-

ers: Basic Primary, DDM, ahd Basic—Optimistic,

In this environment (long treansactions, heavy system load) transac-
tions conflict with each other more often, but only a frection of the
conflicts lecad to transaction deadlocks. Thus, transaction blocking is
better than indiscriminate transaction abortion., Moreover, prompt lock
conflict detection is better than procrastination. Lock conflicts that
are detected at transaction end always lead to deadlocks. The Basic
Primary, DDM, and Basic Optimistic slgorithms use the blocking strategy,
The Basic Primary algorithm uses the early lock conflict detection stra-

tegy.

The Basic Primary Copy algorithm performs best in this envirorment
because it does not abort s transaction unless it deadlocks, and it
detects lock conflicts as soon as they occur. However, when most tran-
sactions are 7read-only, and the database is not fully redundant, the
Basic Primary Copy does not perform as well as the DDM and Basic-
Optimistic algorithms, because the extrs communication messages required
by the Basic Primary Copy algorithm for write-locks and deadlock detec-
tions does not outweigh the extra transaction abortions by the DDM and

Basic—Optimistic algorithm,

The DDM and the Basic Optimistic algorithms perform well in par-
tially redundant databases, becanse more lock conflicts are detected
during the reading phase of transactions and less transactions abort at
the commit phase. However, when the datsbase is fully redundant, most
loek conflicts are detected during the commit phase, which always leads
to deadlocks and transaction abortions, thus resulting in the poorer

performance of these two algorithms in this conditions,

The timestamp algorithms do not perform as well as the Basic~
Primary method because transaction blocking is better than transaction

sbortion. However, the timestsmp algorithms perform better than the DDM

sand Basic-Optimistic algorithms, when the datsbase is fully redundant,
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Read-only transactions incur Bo communication delay and complete
quickly; the road-phase of write transactions also completes guickly.
Thus conflict between read-only transactions and write transactions that
result ip the abortion of write transactions is reduced. In addition,
when the database is folly redundant, the timestamp algorithms detect
more conflicts at the read-phase, thus sborting more transactions at
carlier stages of processing, while the DDM and Basic-—Optimistic algo-
rithms detect more conflicts at the commit phase, thus aborting more
transactions at their ends., However, when the database is not fully
redundant, the DDM and Basic-Optimistic algorithms detect more conflicts
at the read-phase, and they abort more transactions at ths early stages

of processing, thus performing better than the timestamp algorithms,

The Wait-Die algorithm performs as well as the Basic Timestamp
algorithm, except when most transactions are read-only. Then the Basic
Timestamp algorithm has higher throughput of read-only transactions than
the Wait-Die algorithm,

The Majority Consensus algorithm also performs poorly because it
delays 1lock conflict detection until transaction end, thus resulting in
many late transaction abortions, In fact, all certifier algorithms that
certify transactions at transaction end perform badly in the long tran-
saction environment, The Primary Site § Primary Site (C-C) and the Pri-
mary Copy @ Primary Copy (P-P) algorithms also perform relativeiy well
when the database is fully redundant. These two slgorithms abort fewer
transactions than the Basic Timestamp, Multiple Version Timestamp, DDM,
and Basic Optimistic algorithms, and the savings in transaction abor-
tions more than make up for the extra communication messages required by
the two algorithms. The Basic-Basic algorithm does not perform as well
because it requires many more communication messages than other algo-
rithms.

To summarize, in this environment transaction blocking is better

than transaction abortion, and early lock conflict detection is better

than late detection.
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low low full 5 2 2 1 2 2 3 3 4 2
high low full 5 2 2 1 2 2 3 3 4 3
low high full 5 2 2 1 2 2 3 3 4 2
high kigh full 5 2 2 1 2 2 3 2 4 3
low low part 5 2 2 1 3 3 1 1 4 2
high low part 5 3 3 2 3 3 1 1 4 3
low bigh part s 2 2 1 3 3 1 1 4 2
high high part 5 3 3 2 3 3 1 1 4 3

|
I

Rank 1 is best and Rank 6 is worst,
Rank numbers have no absolute meaning. They only show relative
performance across a row, not a column,
R/W: Ratio of Read-only 'ransactions to Write tramnsactions
L/C: Ratio of Local delay to Communication delay, excluding
gqueuing delay
Red: Redundancy of the database
® : Does not matter

Figure 4.5 Performance Comparison: Long
Transaction Loaded § IO Bound
4.3.4 long Transactions § Communication Bound

In this section, we compare the performance of distriboted con-
currency control algorithms in a8 system environment in which most tran-
sactions are long and communication channel is the bottleneck. The com-—
parison of these algorithms is summarized in Figure 4,6. The comparison
is based on actual simulation results except for the Wait-Die and Major-
ity Consensus algorithms, The evaluation of the Wait-Die algorithm is
based on its similarity to the Basic Timestamp algorithm; and the
evaluation of the Majority Consensus algorithm is based on its similar-

ity to the Basic Optimistic algorithm,

Figure 4.6 shows that six algorithms perform better than the oth-
ers: Basic Timestamp, Multiple Version Timestamp, DDM, Basic Optimistic,

Basic Primary, and Wait-Die.

In this system environment (long transactions, heavy system load,
and long communication delay) transactions conflict with each other more
often, but only a fraction of the conflicis 1lead to deadlocks; thus,
transaction blocking is better than indiscriminate tramsaction abortion,
Moreover, early lock conflict detection is better tham procrastination.

Lock conflicts detected at transaction end always lead to deadlocks.
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Road-only transactions incur no communication delay and complete
quickly; the read-phase of write transactions also completes quickly,
Thus conflict between read-only transactions and write transactions thst
rosult in the sbortion of write transactions is reduced. In addition,
when the database is fully redundant, the timestamp algorithms detect
more conflicts at the read-phase, thus aborting more transactions at
earlier stages of processing, while the DDM and Basic-Optimistic algo-
rithms detect more conflicts at the commit phase, thus aborting more
transactions at their ends. However, when the database is not fully
redundant, the DDM and Basic—Optimistic algorithms detect more conflicts
at the read-phase, snd they abort more transactions at the early stages

of processing, thus performing better than the timestamp algorithms.

The Wait-Die slgorithm performs as well as the Basic Timestamp
algorithm, except when most transactions are read-only. Then the Basic
Timestamp algorithm has higher throughput of read-only transactions than
the Wait-Die algorithm,

The Majority Consensus algorithm also performs poorly because it
delays lock conflict detection until transaction end, thus resulting in
many late transaction sbortions. In fact, all certifier algorithms that
certify transactions at transaction end perform badly in the long tran-
saction environment, The Primary Site § Primary Site (C-C) and the Pri-
mary Copy & Primary Copy (P-P) algorithms also perform relativeiy well
when the database is fully redundant. These two algorithms abort fewer
transactions than the Basic Timestamp, Multiple Version Timestamp, DDM,
and Basic Optimistic algorithms, and the savings in transaction abor-
tions more than make up for the extra communication messages required by
the two algorithms. The Basic-Basic algorithm does not perform as well
because it requires many more communication messages than other algo-
rithms.

To summarize, in this environment transaction blocking is better
than transaction abortion, and early lock conflict detection is better

than late detection.
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The Basic Primary, DDN, Basic Optimistic, and to certain degree the
Wait-Die algorithms use the blocking strategy; and the Basic Primary and
Wait-Die algorithms detect lock conflicts as early as possible. In
addition, becanse of 1long communication delay, algorithms requiring
extra communication messages may not perform well even if they use tran-
saction blocking instead of transaction abortion, The DDN and the Basic

Primary algorithms require extra communication messages in some cases.

The Basic Primary Copy algorithm performs the best when the data-
bese is not fully redundant because it requires no more communication
messages than the other algorithms, and because it causes fewer unneces-
sary transaction abortions. Even when the database is not fully redun-
dant, if most transactions are write transactions and local delay is
high relative to the communication delay, the Basic Primary Copy algo-
rithm still performs better than the Basic Timestamp, Multiple Version
Timestamp, DDM, and Basic-Optimistic algorithms, because the latter
abort write transactions frequently. However, vwhen the database is
fully redundant, the Basic Primary Copy algorithm requires more communi-
cation messages than the Basic Timestamp, MNultiple Version Timestamp,
DDM, anC Basic Optimistic algorithms. Thus, except for the cases above,
the extra communication messag:s required by the Basic Primary Copy
algorithm make its performance worse than that of the Basic Timestamp,
Multiple Version Timestamp, DDM, and sasic-Optimistic algorithm in this

communication bound environment.

The timestamp based algorithms perform best when the database is
fully redundant, then read-only transactions incur no communication
delay and complete quickly. The read phase of write transactions also
completes quickly. When read-only transactions and the read phase of
write transactions complete quickly, conflicts between read-only and
write transactions that result in abortion of the write transactions is

reduced. Thus, unnecessary transaction abortion is reduced.

The DDM method avoids conflicts between read-only transactions and
write tramsactions, but it pays with more abortions of write transac-
tions at transaction end. Thus, when most transactions are read-only,

it performs very well. The higher throughput of read-oanly transactions

make up for the extra abortion of write tranmsactions, Notice that DDM
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requires a extrs round of communication messages for read~only transsc-
tions when the database is not fully redundant. Then its performance

degrades.

The Basic—Optimistic algorithm also performs well when most tran-—
sactions are read-only; then read-only transactions and the read phase
of write transactions complete quickly. Otherwise it performs poorly
because the system is eventually saturated with many long write tranmsac-

tions that later abort.

The Wait-Die algorithm performs as well as the Basic Timestamp
algorithm when most transactions are write transactions, but not as well
when most transactions are read-only transactions. Since the Wait-Die
algorithm needs no overhead for maintaining data item timestamps, it is
preferable to the timestamp based algorithms if most transactions are

write transactions.

The Basic $ Basic, Primary Copy & Primary Copy, and Primary Site §
Primary Site algorithms perform poorly because they require more commun-—
ication messages than other algorithms, Communication overhead is

expensive in this communication bound enviromment,

To summarize, in this environment transaction blocking is better
than transaction abortion, and early lock conflict detection is better
than late detection., However, some algorithms that use these two stra-
tegies may pnot perform well in some cases because they require extra

communication messages.

4.4 Conclusion

We found that five of the twelve algorithms perform best in various
system environmentss: Basic Timestamp, Multiple Version Timestamp, DDM,

Basic Optimistic, and Basic-Primary algorithms.

When most transactions are short, concurrency control algorithms
that abort conflicting transactions (such as Basic Timestamp, Multiple
Version Timestamp algorithms) perform better than algorithms that block

conflicting transactions (such as the Basic trimary algorithm). In this
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é B-B P~P C~C B-P BaT MvT DDM Opm Maj Die
R/ (B+¥W) Loc/Com Redundant

low low full 6 5 § 6 1 1 5 4 6 1
high low full 6 § 5 4 1 1 3 3 6 2
low high full 6 5§ § 1 2 2 4 3 6 2
high high full 6 § 5 4 2 2 1 3 6 3
low low part 6 5 5 1 3 3 2 3 6 3
high low part 6 5 5 1 2 2 2 1 6 3
low high part 6 5 5 1 2 2 4 3 6 2
bhigh high part 6 5 s 2 3 3 1 2 6 3

Rank 1 is best and Rank 6 is worst,
Rank numbers have no absolute meaning. They only show relative
performance across a row, not a column.
R/W: Ratio of Rend-onl{ transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding
queuning delay
Red: Redundancy of the database
¢ : Does not matter

Figure 4.6 Performance Comparison: Long
Transactions § Communication Bound

environment, transactions conflict rarely; and when they do conflict,
the blocking transactions tend to be longer than the average transaction
size and blocking delay long [LINN83]. If a two—phese locking algorithm
must be used, algorithms that delay lock conflict checking {(such as the
DDM and the Basic Optimistic algorithms) perform better thanm those that
expedite lock conflict checking (such as the Basic Primary algorithm).
Unless the communication bandwidth is very high, communication delay can
devastate system performance; thus, the designer should reduce communi-
cation delay by locally controlling and accessing data as much as possi-
ble.

The issue of balancing communication delay against data distribu-

tion and replication is part of the complex problem of distributed data-
base design. Distributed database design must also take into account
the issues of distributed gquery processing and distributed database
reliability, and is beyond the scope of this handbook.

k Behsvior of systems that have long transactions is very different
from that of systems that have short tramsactions. Long tramsactions

degrade system performance very quickly becsuse they have more transac-

tion conflicts. Since only a fractionm of these conflicts results in

deadlocks, concurrency control slgorithms that use transaction blocking
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often perform better than those that uvse transaction adbortion indiscrim-
inately. Moreover, concurrency slgorithms that detect transaction con-
flict earlier often perform better than those that detect tranmsaction
conflict later. The effect of commumication delay on the performance of
& system that has long transactions is even more devastating than the
effect on a system that has short transactions. Thus the designer must
reduvce communication delay as much as possible by controlling and

accessing data locally.

However, no matter which concurrency algorithm the designer uses, a
system that has long transactions always performs worse than a system
that has short transactions. The designer should design transactioms to
access as much data in parsllel as possible, and to break long transac-
tions into shorter transactions. Long transsctions that cannot be bro-

ken into shorter ones must be executed in background mode.

Our performance study shows that no one algorithm performs best in
all system and application environments. If the system environment is
stable, the database designer can select one algorithm that performs
best in the enviromment., If the system environment is not stable, the
database designer can assign different weights to different environments
according to how often the system stays in each environment. The data-
base designer then selects the algorithm that bhas the best weighted

average performance.

From the results, we can also conclude that the best algorithm
would be one that could be adjusted by the system administrator accord-
ing to the envirooment. The administrator would adjust the algorithm to
use transaction abortion and delay 1lock conflict detection whenever
transactions are short, and to use transaction blocking and detect lock
conflicts as soon as possible whenever transactions are long, The adju-—
stable algorithm would also alternate, depending on the load on the com-

munication cbhannel, between slgorithms that have more locealized conmtrol

and algorithms that have more distributed control,
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A.

Notations used in the appendix are explained here and in the figures.

READ THROUGHPUT: average number of read-only reguests successfully
processed per unit time gexclu ing requests processed
and subsequently aborted

WRITE THROUGHPUT: Average number of write requests successfully
processed per unit time gexcluding requests processed
and subsequently aborted

Average Response Per Read Request: average time required to process
a read-only request.

Average Response Per Write Request: average time required to process
a write request.

T

!
] Basic Basic : Basic and Basic algorithm, |
- Prmry Prary : Primary Cogy and Primary Copy algorithm,
1 Cntr : Primary Site and Primary Site algorithm. i
: Basic Prmry : Basic and Primary Cogy algorithm. f
Basic Cntrl : Basic and Primary Site algorithm.
Basic Tstmp : Basic Timestamp algorithm.
Mltpl Versn : DDM Multiple Version and Qptimistic algorithm,. :
Basic Optms : Basic and Optimistic algorithm, ]




|Mltpl|Basic

|Tstmp.Versn.0ptms

Basic|Basic
Cntrl

|

Basic
Prmry

Cntrll

!

Prary
prary

Distributed Database System Designer Handbook
TZ=4, DZ=8192

Basic

iR/(R'IO/ ‘no. of copy |
l+¥) |Comm}s1 {52 153" | Basic

Page A-2
Appendix A

(32] N N Lt O [
- Q . o » . . .
[La T ] . (N N O L
.
] mn
] ©2
-— K e () == (Ve ] )
. [} . . . - . =
o N o N - n -—
.. -
NN N
] (U8 ] 0
-— [+ o] oMM 1 N N
. O R, o o ~— {— ot ot -
m m o (NO . . . b o oD} - g
- N Y] - ~NOar vl O
-~ 0 -
—FOon 3 N o
o t~On T N~ b~ ///iM > 9 O
. LI Y . * o 5 o o o OO0+ qm e ] a
o rco O =INNINE~IOST | (N O Es )
-— - - - - at (o] n gv
OO © [Koal [ B!
£ Prmd TO ¥ L3
(Vo t~ OO ® O [o0 NolValTaloVITotTo T pm K= o O o V— @OT ® E=O
. o o o ° o8 v o . e e s e e & « o 2 o 0 [ 9 Q m
L A B 3 Y s Lo - v 2o Lo o Ll ¥ NN = = O NN ) = QOO & o
- - 4 D) o] q L=
Ls Rs ) m 94 -+ OO
naoag L O O
- OO S adeal o ANONON O MO ONMMN O O D= 0O® W -+ 2L
e e o 0 ® o s 0 OD * & ¢ ¢ ® ® & s 0 & 5 0 " B 4 s s 8 e e & o 0o QD Vi C“ o
- 0IN—- 33 TalTaYs} (11008 281321 —MNOVW= MMt~ MO~ NPT TONNOUNM | OO0 2 o
- - - LNMO0T © 1) ...m
hhha = |
- PO M tm % wu
[Te = gVe) (Y] =00 M .
n/mrhw-ov . LR eeemt Nno~ad Uum
— QT = I NNe= e F-p-y-y% QO>»O o
FENC T Y~ o} o o wc
N 4O~
B L, PP O0U Ked
Q0 WO VIO o OV D-Oh e o aaw.s 0 vo m
o o o o 0 [ * o s s 0 w ay o
O NOONO w S ONNO nann « me Y
e o@l F=] wd
VOO AT QAP w
>>>n OLTO <]
QOVPOAPH>P I .
e 3OO 00
MO NN O ONA () O OO NI N N OO O IO NI AT AN NI NN N FEi%e I
e e e N O U N U U N T A SO U NSO SO RN TURN SN SN N NS N NN N NNNNNNNSNNNN ) U NeoT 00 O8 —
§ —~ 00
[12332.3213 Hrala s alaVTa g a Wiy aTa e p oV s oTaVien aVTeaTa NaaTaV aVaatNaViaVaVRoaViaViatLatRat ot o o VoV a'katiat Fathe eV iy QWO S
Ly ol e e el e e i e T St S e e P T e i e e oy | (o] Qe O @
NNN~ONe=N NN NN e N e (e e e e e re e e e e e e “ MO.W m [
- L
ONONEN O NN N NN N A OO N NN ONAL NN yyynub ye O iz, w
Dt e e kL Rl el ol ot o ot el el ad ol ol ok ol B eJRo No R =} m O QO Lal
NN = = v = = (e O o= O e O\ v (v S0 S b O fedd X o x4
A 2LoN 0
1 NGy A
OO OO N LT N QU AU O O OOV VLN — — LWDIDID NN AU AN NI AN VD N — — — NN N == O (N v | © O O S~y Q
P s o ¢ e o 0 e 0 0 o s o0 e e e e e s s e e . e P A & @D se e O
] pppefu.m (&)
o wavana wana stnapane 1808322858 o
WRAVARA, g BENAHA PR VAR DA B BR BRYR bR ! oty B VRV BRVABR WA BRYALLHA VL HR R VR U BB DR VAW |}
”UO’SSS‘OPSSO5555500555555005555005550550550550505050505 -ull + 0O (o]
IV 173 ot s e VR 15 L e TR LAY L o S S VoAV TV o) o Sy S Ve Wa Ta VoVl o S e RV RV Ea iV Ta ¥ o uaV T ¥ eV iV e Tt o VEVal S Vel o Vet o TaY au et ot “ Mmm o0 oo .-Rm
~r .
. ] NNANO O
I'EE ST ER R IR NN B RS ERE NN EE RN R EERE EEE N ENRENN NN R NI L L T N L T el of- oo




|
|
|

|Mltpl|Basic
VersnOptms

Tstmp,

Page A-3

Basic

I

lPrmry|Cntrl

Cntrl [|Basic!Basic

Prory
1Prary | Total

TZ=4, DZ=8192

Basic

ystem Designer Handbook
Is2 {s3

) lco‘s1

+W

Distributed Database S
HPiR/(R'IO/ no. of copy | Basic

Appendix A

]
]
2 ™ - N o o~ i
. . L] . . N [
o o ™~ 0 o~ . 1 ]
n 1 . !
) .
» !
F* O - NO e ~ 1
. . . o . . [« o] -] e
N O ™M ~N un — .
-4 LI -
~ N
oo (2] 4
(V-2 T N = N m . N N
. . . e . . [4¥] -— i -
L= A T~ ) " M (Yo N . — s e O ~—
wn ~Nooar [72}
—\N\NCQ
~—O=r 00N . ]
NNNHd®@ > ]
. . o « o o 0 0 0 s 0 ——0NO® s ) g
wnn S m IO IOWOLOLN &t [0} a d
POV N 1~ [ R}
Pn..ns“d -To L g
domdad~— «d@OV o 3
- OO -0~ © wN O bbb N (KN % o o
L] o s » s o 0 . o o e e & 5 ® 5 o 0 o 0 QD QP | PR =4 o om
0 N FIIONTITN & NN = ONSrAY N ONN=r oy PP ) o] =T %
irdd @ O+ H 04
nonNgo L& T QO
oW ad@a@ A N
ZFONONN OR—=-NO O —ONM UNOO NN O O OINOTTNUNTNM | DD D Q ] o
® s s 0o o * e o e o oCN O 2 8 8 2 0 8 9 s 0 008 0 0.0 8 0 0 0 0 VOV & [ a
(12132 3 K ol Y] Lt 2k and ol NN o o MO MMM MO N0~ S 3 =3 NUODOnr mmm ov .n.m |9 m-.“c
tttae fvm [+ Um
Mh 0 A3
wowniuny =4 O b~CO\O® VOV AL NOoO~@ 3
* o o o o [3 e o o o £.53.0 5. SOMO o
NN = v=— - =0 NN PP gd 0 ado wo
- O~ (&)
Rkt el ) L0 x
aaaws 0 ©O m&
NNN~N e~ O~ &V.
¢ o . . e s ¢ o naon ame o
NONANNN Lol —ONNNM —~N—— 0o -MI g 2o
QOVLHA~N A QAP T
>>>nN V5V Im
DOV OAD> I “
NI NS NN NN N OO N NN NN VNI NIV NN NN 4 32 0 <4 0 O -
Dt e el Ll e i e e i e e e g~ @3
MM N (A OO AT IO YOO NN AN OIS NN NN NN N NN NN Y ) e S S O 4 .
Pttt N %04 80 o -
NANAN—=Nr~Ne—Ne~ NN NN N (N e e v v e e v e e e e v e e v v e orm““ﬂ“ ©
OO (N NI (NI (NIO N (YK YN NN Ky yyy OB E OIR £
Ll e el e e o e R e S S e e e S ol ol ol ad and ol d ol ol ol od 2l el and ekl and and o0 ye O fz¢ w
NONN~=ON NN~ NN =N = Q= = O Mw Mw MW =] mw b MW Hu mu X
.
A, 00O e
NN v (OO NSO OOV Y O QU VLD LD = = NN DO N VAL NN AU AN DIN = = NN NN = v NN v B0 Qufy S Dy
e 0 0 LI e @ o o 0o v o 0 o o s s 8 0 s o 0 0 e » . . . 1OV W~ (=%
frdrtirmi Sy @4 0o o0 O
S - jSadssy s S
] WAL WA DAVAVARA PR PR VA VL PR PR LA R VR LB R R, ! BADR TAAVL L BL T WA pA PR VA RA VA VR VA AV B VALY DA. | i ~—~
OO WDIONO LW 55555‘0‘.0555555 0555500ggstossmssusosososos &btb.vATme L
OO~ ==l O\ Bl O Bt B 0 D O OV e B = =l OV O U == OO VN QN BN BN LD B=OU LD B LNV B D B D .Iu.\nnu‘u an [+]
e oe e
=xIx ~N e
NNASNO O
SV S USRS RES DRSS S ST AN CETRE S S EN T AESET RN SN QDWDDWRBRRE |8 MO =




Distributed Database System Designer Handbook
TZ=4, DZ=8192

Page A-4
Appendix A

Cntrl Basic'Basic'Baaic|Hltpl|Baaic

!TotallPrmrlentrl|Tatmp.Versn Optms

17152 |53’ |Basic!Prmry

IR 1 . 1 ]
HP|+‘SR|égm$!go of cogy Basiciprmry

N A w0 (=] ™ 0

N N NN N o . . .

. . N N ™ [y}

o O A< < == n

[SYARNY) N N e I3 . .

. L4 N N ™M m

o O N o™ =

N N . . . 3

. . N NN N ™ o
o (=4 and QTN NN
[V-3Y . . s e s IR
(2 d — N ¢ sYme= 0 Py

W W w0 [Ta R Yo1Te) WO =0 = INNWO N

N N UWNALY o 0o s o . . . ® 8 ¢ & 0 & 5 0 ¢ @

. . » s sONCNINQN N NM QN NP (N (N

O M=~ N OV N Nt NA Yy OO O OaF IN=T =N TWO Me— M- O ™0 N

o s 0 s s e o * o o @ o o 8 5 o % ¢ o 9 s 0 s 0 0 s o s »

= NN O ST SF A0 b~ O t~\0 M NST NNST NNSF T N NN~ s

— OO b~ Ve D O O~

e o o o . e 5 o o

=Py =< I

— A I  nd \O t~~-00 00

NN o . e o s 2 e

e o o= o N [3218' 110 3 [}

NN AN NN MO NN NN N NN TN IO NN NN NN NN NN
Pt e L N S L L L A L L L L L NN
[SYEAVTAVE S aVE S VE SN G VE S aVE S S TR oVl aVE Sl aVE S o VR ol ot ol o o ol o ol ol ol ol el ad otk d

NN NN N N AN NN NI NI NN N NN NN NN NN N
Ll el e e e e s e e e e i S e e T e T e e T e e e e e
ANNe=Ne=AN=N— =N NN e e e e e e e e e e e v e e v e e

MMM MO (YN N NN NI MO NOS oNY
Bt e e e e i e e e e e e S S S S S ol ol ad o ol al el ol ol ol ol ol 2nd kot ondh aull and
NANNe—=N=N=Ne NN =N NN~ -

(VT Ia VL VoYV o Vo YoV gV A N QVEQVEAVE QU o VEQVEQVEQ Vo Vet ol o Vo Vo YT YV TaVEAVRAVEQVRA ROt RQVEQVIaVITQ T o TV a Ll ol nd VISV K QVEGVE ol ud IVE ol o
s o o . . o *

o » 0 e ® o o & o 8 s 0 o . e 0 * ¢ s o o @

NANANR YADR VR B VR PAVA R B PR YL VR DR DA TL AT YA A BRBA BALRE B YA R BR BA VR R HA VLR P BN BB BL HA L BALA YR VA
OO ==LV DY O\ P e B D=l MOV O O BB Bl O OB 8-LOUEO N O OV B O LD =N BN =N - WD DV D= N -

[T XY EE RN AN NS ER R RS AR R R EREERERESEEERERNERSERR N TI0 UL L L L ]

m
(2]
3
LI -
o~ N
o0 (2]
. NN
Ll dd -
~— s oD M -
~osr 2]
N2 0
—0X o . (2
NN A Q
[=1V- 1 ] .m +
-0 oo Lo IR, ]
at oG @0
o0 Q o | W}
PPPMd VO »
o @ @ O~ %d o
£
PP L &
PP P 0 o s
Ardord Do
nnngo Lo T
oW oad
'8 R Lk o 0O 0
[N R Py ] t.m Q
Lo by £ OO L] | Y
hhh& g3
PP P [ ] tvm Q
eeewm a0 g
”~
L33 5 DQVVM
PO (=] o<
- O~
S8, L2PO0C
aaaw.s CV.dd
anon m aase
e 0D -wlnh
sTengiegs
QOOYP Q> 3%
~i 30 ~00
O~ 3
Yoo Oogon
gaddgds & O O
erdord e SO~ W0
“wOortd g
[+ Qi O
LWH+200a
yyy QUL O£,
ObyeOlF
OOODM O Q
So by o O Ly dd M oo
Q00 2L0 T
) Q@
DO DTt [
A4 S @S o0 v O
pppetu i (&4
i > O \Im
POPCLHER L
ulu +0 O
Munuuvu......nc
S J
NN O O
s WBREHQESH =

Short Transactions & Communication Bound

Average Response Per Read Request

Figure A.3




Page A-5

gner Handbook

Distributed Database System Desi

Appendix A

i
f
!

TZ=4, DZz=8192

-

ITatmp.VersnlOptms.

asic‘Basic'BasielMltpl Basicl

PraryCntrl

B

Cntrll
PruryiTotal

Prmry|

|

lno. of co y‘Basic
Comm|S} |S2 lsg Basic

HPi§6§R'IO /

(= 3RV - -0 (=4} w O
N N . . e . . .
. N NN N ™ m
@ O N N~ (= O [
N N . . . Y .
. . N NN N (32} (18}
o ON [ o =
N N . o . .
. . N NN N ™ m
—Lln Qe NN O 0 NI~
LI LI ] ¢ ® 5 o v o s
e [aalaV} NN\ —e— N
M O ANV o M~ OO O WOV —— NI
. . e« o 5 ¢ & s . . o L] ® 5 & &% ° 8 * o
Wy I Narnararnse [To R o E R grat 2ok giallalialia]
O~ NN OWO AU O\ v =T ~AO NS v ==L +— (VU0 ST (v~ OND
e s s 0 @ LN I I 4 e s 0 ® . e o @ s 0 s 0 & s st s v e QD
=T NN MN O 00 b~ OO b IO NN NN T N (NN o= s
O = DD ® N -0
» o 0 0 » . ¢ ¢ e o @
[TalTat - 2= 4 == gy g
0O o~ AT D
NN~ 2O . e o o 0 »
o o= v [+ o] OO0

NN O N (N N N MO NN NI AN N NI AT NN NI NI N
Ll o el o e e e e e T i e T S e Tt i T T D e e e i S e T e i e B B B
NN =N e (e N = = O v= (V= O\ e (= O\ 6 e 0 00 1 0 1 1o 1o 1 0 1 0 6 0 = T e

(123203 11278 Taa sV o aTaV s g [aTHs o TaViog 1oVl s g TaVTe s 'aV] e g aV o VoV oV oV o VE oV QUL o VEQVEQV NV ol ot FaVRatEat ot Lo T aN]
Ll el e e e e e e e e T i T e e e i
ANNN N NN e N = e N e (= v v e 1 0 = 7 0 v e = = = 7 v 7 = e v e

NN A OO (A AL DAL N NG 0NN 0NN

Dl e o o o e e e e e S S S e S B S ntanl acd ek and ol el and ol and ad ol cnd aul 2nd snd aud sud aud ind
NANN N =N = NN O N =N e O e O

NN O v OO OO OO O OO O N O OD == = LD LO OO A AU O NN IO U = v = VNN — e (N O v
o @ . L L I LI * o

e o 0 . ® o 9 o 0 2 2 0 » » * e o 0 o @

LY o b DbV O L VO B = OV O (N D BBl U0 O QN B = LW OO O B-ONLLO =N LY B CV LOY B LY B LN D=L

EEESSEESYE KNS EN RN AR R R R R R E RN ERENEREE R R NBRRE NN ILLIT LA L L

- - - o o D B Ty G S S S S > - - -

amming levels at the three site are 10/&}611.

3:

se residing at sites S1, S2, & 33.

per transaction (transaction size

at the three site are 24/4/4,
Total number of data items in the database (database size
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transaction size).
database size)

the database
/message communication delay/data communication delay

e of transactions that are read-only.
no. of copy = Fraction of the database residing at each site.

Brogramming level.
ercentaf
local delay

Average number of requests fer transaction 2
n

TZ =
DZ = Total number of data items

MP = Multi

R/(R+W) =
I0/Comm

h-Put (Read/Write): Short Transactions

& Com%unication Bound

Throu

Figure A.5
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Appendix A
TZ=4, MP=32, DZ=8192.
MPiR/H'IO/‘Database i Basic | Prmry | Cntrl | Basic { Basic | Basic | Mltpl | Basic i
i lCom,Copies i Basic | Prmry l Prmry ; Cntrl ] Tatmp ’ Veran | Optms |
® 25 .2 1 1 1 .97/2.9 1.4/4.3 1.3/4.0 1.5/4.5 1.8/5.4 1.9/5% 1.8/5.6
¢ 50 .2 1 1 1 2.2/2.2 3.2/3.3 2.3/3.0
hd .Zg 2 1 1 1 5.6/1.8 5 /1.8 5.0/1.6 7 1/2.3 8.6/2.9 8.1/2.7 B.1/2.7
P25 1 11 ey .63/1. .5212.
® 50 .5 1 1 1 1.1/1.1 1.4/1.4 1.6/1.6
PRE T SRR ey s
& 501 1 1 1 .5&/.55 .72/.;0 .g?/.81
& 751 1 1 1 1.2/.39 1.2/.39 1.3/.39 1.6/.53
& 252 1 1 1 11/.32 .21/.59 .21/.59 .22/.60
o392 11 1 1ES 94/.31 .85/,28 .84/.28
& 25 .2 2/3 2/3 2/% 1.2/3.6 1.5/4.7 1-8/3.8 1.5/4.7 1.7/4.9 2.0/6.0 2.0/5.9
& 50 .2 2/3 2/3 2/ 2.2/2.8 2.2/3.3 2.9/2.
& .75 .2 2/3 2/3 2/3 5.6/1. .6/1.8 4.7/1.6 6.2/2.1 T.1/2.5 7.8/2.4 7.7/2.6
@ .75 .2 2/3 2/3 2/ u.1/1.§
# .15 .2 2/3 2/3 2/ 3.4/1.
& 25 .5 2/3 2/3 2/ .53/1.6 .66/2.0 .68/2.0
® 50 .5 2/3 2/3 2/ 1.3/1.2 1.3/1.5 1.5/1.3
: .;g iS %5 g; S; Zé ¢.§? 2.47.80 2.2/.72 2§Z;i80
% 501 2/3 2/3 2/ .637.64 .80/.
d .;5 1 2/3 2/ 2/% 1.2/.39 1.1/.39 1.3/.ZZ
® 251 2/3 2/3 2/ .18/7.54 .24/.72 .23/ 71
® 751 2/3 2/3 2/3 .78/.26 1.0/.32 .8B/.29
& .25 .2 1/2 1/2 /2 1.4/4.3 1.6/“.2
¢ .50 .2 1/2 1/2 1/2 3.3/3.2 3.6/3.
. .ZS .2 1/2 1/2 1/2 5.3/1.3 5.8/1.8 4.6/1.5
* 25 .5 1/2 1/2 1/2 .60/1.8 .T1/72.1 .66/2.2
® .50 .5 1/2 1/2 /2 1.4/1.4 1.5/1.g 1.6/1.6
® 75 .5 1/2 1/2 1/2 2.5/.;8 2.4/.8 2.8/.86
® 251 1/2 1/2 1/2 .32/.94 .37/1.1 .86/1.1
* 501 1/2 1/2 1/2 .72/.11 . 0/.16 .81/.81
& 751 1/2 1/2 1/2 1.2/.43 1.37.42 1.47.47
® 25 .2 1 1/2 1/2 1.2/3.7
& 50 .2 1 1/21/2 2.8/2.Z g.g/?.E
75 .2 1 1/21/2 §,6/1. .8/1.9
* .25.%5 1 172 1/2 .5”/1.;
® 50 .5 1 1/2 1/2 1.2/1.
b .35 .5 1 12 1/2 2.0/.8;
® 251 1 1/2 1/2 .20/.
* 501 1 /2 1/2 . 3/.63 LTh/.68
¢ 751 1 1/2 1/2 1.1/.3 1.2/.“1
e .50 .2 1 t/z2 1/2 2.4/2.4 2. /2.Z
€ .75 .2 1 1/2 /2 u.0/1.3 5.2/1,
€ .50 1 1 1/2 1/2 .54/.5 .62/.60
e .75 1 1 1/2 1/2 .90/.31 1.1/.38
# .50 .2 1 172 1/2 2.0/2.1 2.2/2.2
dilie oy et AN F
$ .75 1 1 /2 1/2 .75/ .25 .88/.23
# Multiple programming levels at the three site are 10/%1/11.
€ Multiple programming levels at the three site are 16/8/8.
x Mult%fle programming levels at the three site are 24/4/4,
ssumptions:

Queue for local processing is simulated.
Two kinds of local processing delay are simulated:
message processing delay and data £rocessing delay.
The average round trip communication is fixed at 1
The message processing dela{ is fixed at 5% of the
5% of round trip communication delay
Ratio of data processing & message processi delay is 10
The ratio of data processing delay to round rig
communication delay is shown in column 'I0/Com’

Notation:
TZ = Average number of requests per transsction 2tranaaction size),
DZ = Total npumber of data items in the database (database size).

MP = Multiplr programming level.
R/W = Percentage of transactins that are read-only.

I0/Com = Ratio of local data proceasing delay to gonnunioation
delay (excluding queuein ?.

Database Copies = Fraction of the gatabaae residing at each site.

Figure A.6 Through-Put (Read/Write), Short
Tranasacticns & I0 Bounde
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TZ=4, MP= 32, DZ= 8192
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Multiple programming levels at the three site are 10/
Multiple programming levels a{ the three site are 13/
Multivple programming levels at the three site are 24/
Assum tfons:
Queue ng for local processing is simulaied.
Two kinds of local processing dela{ are simulated:

message processinf delay and data processing delay. 7

p
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The average rcund tr communication is fixed at 1
The message processing delay is fixed at 5§ of the
5% of round trip communication delay
Ratio of data processing & message srocessi delay is 10
The ratio of data processing delai 0 round tri
communication delay is shown in colume 'IO/Bom'

Notation:
h T% = Average number of requests per transaction étransaction size).

D Total number of data items in the database (database size).

MP = Multiplr programming level,

R/W = Percentage of transactins that are read-only.

10/Com = Ratio of local data processing delay to communication
delay (excluding queueing).

Database Copies = Fraction of the database residing at each site.

Figure A.7 Average Response Time (Read/Write):
Short Transactions & 10 Bound

M e e .



el

e e

Distributed Database System Designer Handbook
Appendix A
MP!R/W |10/ |Database Basic Basic ; Mltpl | Basic
l |Com Copies Prory Tstmp | Versn | Optms
& 25 .2 1 1 1 2.0/6.0 1.5/4.4 ,90/.20 ,85/1.
. .ZS 2 1 1 1 9.2/3.0 7.8/2.8 6.6/2.1 6.2/2.2
R HIRIRIR s W' 5 i i
e 122 503 03 203 | 114083 190739 297855 %3082
® 75 .2 2/3 2/3 2/% T1.9/2.7 6.1/1.9 10./3.3 9.6/3.4
® 252 2/3 2/3 2/ .25/.81 .14/.39 .26/.Z .23/.85
® 75 2 2/3 2/3 2/3 98/.33 .68/.22 1.47.44 1.3/.37
bd Multigle progrumming levels at the three site are 10/11/11.
Ratio of local data processing & message processing delay is 10

Assunmption:
Queue ng for local processing is sipulated.
Two kinds of local processing are simulated:
(message and data processing).
The round trip communication Is fixed at 1
The local message processing delay is fixed at
5% of the round trip communicatior delay
The ratio of local data processi delay to round trip
communication delay is shown In colume 'I0/Comm!

Notation:

TZ Average number of requests fer transaction.

DZ Total number of data items in the database.

MP = Multiple programming level.

R/W = Ratio of read-only to write transactions.

I0/Com = Ratio of local data processing delay to
communication delay (excluding queueing).

Database Copies = Fraction of the database at each site.

Figure A.8 Through-Put (Read/Write): Long
Transaction Loaded & I0 Bound

Page
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" T2=16,DZ=8192,MP=32
MP'R/H'IO/{Database ! Basic i Basic i Mlitpl | Basic i
f lCom,Copies ! Prmry ; Tstmp | Versn ; Optms ;

# .25 .2 1 1 1 | 2.8/k.6 2.272.2 1.1/2.1° 2.1/2.6
bd .ZS 2 1 1 1 1.9/5.5 2.2/2.2 1.6/2. 1.;/3.0
& 252 1 1 1 20./33 22./22 13/2 19/24

* 75 2 1 1 1 17./742 21/ 21 19/2 21/27

& 25 .2 2/3 2/ 2/% 2.3/#.8 3.0/2.0 1.4/72.6 2.8/2.3
* 715 .2 2/3 2/3 2/ A4/5.6 .9/2. 1.9/2.6 2.0/3.

® 251 2/3 2/3 2/3 ‘ 25./23 28/2 14719 18/21

® 751 2/3 2/3 2/3 | 22./42 28/2 16/20 18/25

. Multi;le programming levels at the three site are 10/11/11.
Ratio of local data processing & message processing delay is 10

Assumption:

Queue;ng for local processing is simulated,

Two kinds of local processing are simulated:

(message and data processin§).

The round trip communication is fixed at 1

The local message processing delay is fixed at
% of the round trip communication delay

The ratio of local data processinf delay to round trip
communication delay is shown in colume 'I0/Comm'

Notation:
TZ = Average number of requests per transaction,
DZ = Total number of data items in the database,

MP = Multiple programming level.

R/W = Ratio of read-only to write transactions.

I0/Com = Ratio of local data processing delay to
communication delay (excluding queueing).

Database Copies = Fraction of the database at each site.

Figure A.9 Average Response Time: Lon
Transaction Loaded & I0 Boﬁnd
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TZ=16 ,D2=8192,MP=32
MP‘B/H'IO/iDatabase ; Basic | Basic ; Mltpl ‘ Basic i
‘ lCom.Copies i\ Prmry | Tstmp | Versn | Optms

» .25 .2 1 1 1 | 2.h/ .g 9726 .6/8.6 u.g/1o

. 52 1 1] 21 76.5 64719 38/11 ko112

® 025237 v 1 g 1.2/3.5 1.072.8 .42/.98 .46/1.3

» 52, 11 5.4/1.8 8.0/2.2 10/2.6 6.2/1.9

® 05 12 2/3 2/3 2/ 2.276.5 1.674.4 .9 727 1:975.1

. 15 52 213 213 2 ] 9:9/3.2 1,9/2.4 T.or2. i0r3

® (05 2" 273 2/3 2/3 | 1.072.9 .8hs2.4 .5L471.5 .66/2.0

® 752 2/3 2/3 2/3 | 4.7/1.5 4.07/1.3 5.6/1.7 4.8/1.3
ple programming evels a e ree s e are .

8 Multipl ing levels at the th it 10/11/11

Assumption:

Queueing for communication channel is simulated.

Only one kind of local processing is simulated.

The average round trip communication is fixed at 1

The ratio of local data processing delay to round trip
communication delay is shown in colume 'IO/Conmm!'

Notation:

TZ = Average number of requests r transaction,

DZ Total number of data items in the database.

MP = Multiple pro ammin% level.

R/W = Rati of rea -onl{ o write transactions.

10/Com = Ratio of local processing delay to communication
delay (excluding queueing delay).

Database Copies = Fraction of the database at each site,

Figure 4.10 Throuéh-Put (Read/Write): Long Transaction
Loaded & Communicaton Bound

- e S e = = s - T = et o Sy e 0 oy o e S e S S e e Ty 0 S iy S S S

HPiR/WiIO/'Database ; Basic | Basic i Mltpl Basic i
j ICom|Copies Prmry | Tstmp | Versn Optms |

- " T - " - T - . - > T A e S e e - S T G - o

* 25 .2 1 1 1 i 1.2/4.1 2/ .2 .2/.53  W42/.51
& 75 .2 1 1 Ty .52/3.) 2/.2 .2/ .45 .30/.50
* 252 1 1 1 3.9/5.8 2/2 2/4.9 3.2/4.6
* .15 2 1 1 1 3.1/8.8 2/2 2/3.1 2. /4.3
® 25 .2 2/3 2/3 2/3 I 2.5/4.2 2/2 .86/3.7 2.2/2.

. .35 .2 2/% 2/% 2/3 i 2.1/4.2 1. /1.2 1.&/;.3 1.8/8.1
& 251 2/3 2/3 2/ 6.3/8.9 3.1/3. 3.0/7. 5.6/6.7
¥ 751 2/3 2/3 2/3 1 4.2/8.5 3.2/3.1 3.1/5.7 4.2/6.6

® Multiple programming levels at the three site are 10/11/11,

Assumption:

Queueing for communication channel is simulated.

Only one kind of local processi is simulated.

The average round trig communication is fixed at 1

The ratio of local data processing delay to round trip
communication delay is shown in colume 'IO/Comm!

Notation:

TZ = Average number of requests r transaction.

DZ Total number of data items in the database,

MP = Multiple programmin% level,

R/W = Rati of rea -onli o write transactions.

10/Com = Ratio of local processing delay to communication
delay (excluding queueing delay).

Databae Copies = Fraction of the ﬁatabase at each site,

Figure A.11 Average Response Time (Read/Write)
Long Transaction & Communication Bound
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